化工学报 ›› 2022, Vol. 73 ›› Issue (11): 5078-5087.DOI: 10.11949/0438-1157.20220937
黄笑乐1(), 杨甫2,3, 韩磊1, 宁星1, 李瑞宇1,4, 董凌霄1, 曹虎生5, 邓磊1(
), 车得福1
收稿日期:
2022-07-05
修回日期:
2022-08-22
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
邓磊
作者简介:
黄笑乐(1997—),男,博士研究生,1969912151@qq.com
基金资助:
Xiaole HUANG1(), Fu YANG2,3, Lei HAN1, Xing NING1, Ruiyu LI1,4, Lingxiao DONG1, Husheng CAO5, Lei DENG1(
), Defu CHE1
Received:
2022-07-05
Revised:
2022-08-22
Online:
2022-11-05
Published:
2022-12-06
Contact:
Lei DENG
摘要:
采用X射线CT(computed tomography)成像仪对富油煤(长焰煤)进行了三维表征,建立了统计孔径分布(PSD)的等效孔隙网络模型(PNM),研究了压力梯度和流动方向对渗流过程的影响。结果表明:孔隙、矿物和基质分别占总体积的11.30%、1.03%和87.67%,连通孔隙率为5.13%。孔隙等效半径在3~8 μm内的数量占89.23%,平均配位数为2.87,孔隙连通性较差。等效半径小于2 μm的喉道数占73%,喉道的等效长度主要分布在10~30 μm之间。在相同压力梯度下,三个方向的孔隙压力、渗流速度和流动路径分布不同,表现出各向异性。随着压力梯度的增大,渗流速度逐渐增大,且渗流速度随压力的变化呈现明显的非线性关系。三个方向上的调和平均渗透率为0.1403 mD,这与前人测得的榆神府矿区富油煤渗透率(0.1345 mD)相差在5%以内。
中图分类号:
黄笑乐, 杨甫, 韩磊, 宁星, 李瑞宇, 董凌霄, 曹虎生, 邓磊, 车得福. 富油煤(长焰煤)孔隙结构三维表征及渗流模拟[J]. 化工学报, 2022, 73(11): 5078-5087.
Xiaole HUANG, Fu YANG, Lei HAN, Xing NING, Ruiyu LI, Lingxiao DONG, Husheng CAO, Lei DENG, Defu CHE. 3D characterization of pore structure and seepage simulation of tar-rich coal (long flame coal)[J]. CIESC Journal, 2022, 73(11): 5078-5087.
元素分析/% | 工业分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cd | Hd | Od | Nd | St,d | FCad | Mad | Aad | Vad | |
81.28 | 4.42 | 10.12 | 0.89 | 0.52 | 63.16 | 6.01 | 2.60 | 28.23 |
表1 富油煤的工业分析和元素分析
Table 1 Ultimate and proximate analyses of tar-rich coal
元素分析/% | 工业分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cd | Hd | Od | Nd | St,d | FCad | Mad | Aad | Vad | |
81.28 | 4.42 | 10.12 | 0.89 | 0.52 | 63.16 | 6.01 | 2.60 | 28.23 |
图3 富油煤三维数字模型(a)完整模型;(b)孔隙模型;(c)基质模型;(d)矿物质模型
Fig.3 3D digital model of tar-rich coal(a) complete model; (b) pore model; (c) matrix model; (d) mineral model
组分 | 体积 分数/% | 各组分 体积/μm3 | 总体积/ μm3 | 各组分 体素 | 总体素 |
---|---|---|---|---|---|
孔隙 | 11.30 | 1731600 | 15326000 | 4844250 | 42875000 |
矿物质 | 1.03 | 157900 | 15326000 | 441723 | 42875000 |
煤基质 | 87.67 | 13437000 | 15326000 | 37589000 | 42875000 |
表2 富油煤样各组分含量
Table 2 Content of various components in tar-rich coal samples
组分 | 体积 分数/% | 各组分 体积/μm3 | 总体积/ μm3 | 各组分 体素 | 总体素 |
---|---|---|---|---|---|
孔隙 | 11.30 | 1731600 | 15326000 | 4844250 | 42875000 |
矿物质 | 1.03 | 157900 | 15326000 | 441723 | 42875000 |
煤基质 | 87.67 | 13437000 | 15326000 | 37589000 | 42875000 |
图4 连通孔的分离和标记示意图(a) XY方向的连通孔;(b)三维正交切片;(c)连通孔的体绘制
Fig.4 Separation and labeling of connected pores(a) connected pores in XY direction; (b) 3D orthogonal slice; (c) volume rendering of connected pores
图6 PNM的孔径分布(PSD)图(a)孔隙当量半径;(b)孔隙配位数;(c)喉道等效半径;(d)喉道长度
Fig.6 Pore size distribution (PSD) of PNM(a) pore equivalent radius; (b) pore coordination number; (c) throat equivalent radius; (d) throat length
参数 | 孔径/μm | 连通孔隙 体积/μm3 | 喉道 半径/μm | 喉道 长度/μm | 配位数 |
---|---|---|---|---|---|
最大值 | 14.09 | 11727.11 | 11.04 | 75.51 | 16 |
最小值 | 2.51 | 66.49 | 0.19 | 6.40 | 0 |
平均值 | 5.80 | 1058.96 | 1.63 | 21.35 | 2.87 |
表3 孔隙网络模型定量参数
Table 3 Quantitative parameters of pore network model
参数 | 孔径/μm | 连通孔隙 体积/μm3 | 喉道 半径/μm | 喉道 长度/μm | 配位数 |
---|---|---|---|---|---|
最大值 | 14.09 | 11727.11 | 11.04 | 75.51 | 16 |
最小值 | 2.51 | 66.49 | 0.19 | 6.40 | 0 |
平均值 | 5.80 | 1058.96 | 1.63 | 21.35 | 2.87 |
大小 | 渗流方向 | Q/(m3/s) | A/μm2 | ki /mD | 平均渗透率/mD | ||
---|---|---|---|---|---|---|---|
几何 平均 | 算术 平均 | 调和 平均 | |||||
50×50×50体素 | X | 1.3118×10-10 | 1259.19 | 0.1458 | 0.1422 | 0.1441 | 0.1403 |
Y | 1.0358×10-10 | 1259.19 | 0.1151 | ||||
Z | 1.5421×10-10 | 1259.19 | 0.1714 |
表4 不同方向上的渗透率模拟结果
Table 4 Permeability simulation results in different directions
大小 | 渗流方向 | Q/(m3/s) | A/μm2 | ki /mD | 平均渗透率/mD | ||
---|---|---|---|---|---|---|---|
几何 平均 | 算术 平均 | 调和 平均 | |||||
50×50×50体素 | X | 1.3118×10-10 | 1259.19 | 0.1458 | 0.1422 | 0.1441 | 0.1403 |
Y | 1.0358×10-10 | 1259.19 | 0.1151 | ||||
Z | 1.5421×10-10 | 1259.19 | 0.1714 |
模拟类型 | 氮气密度 ρ/(kg/m3) | 气体动力黏度 μ/(Pa⋅s) | 进口压力 Pin/MPa | 出口压力 Pout/MPa |
---|---|---|---|---|
稳态 | 0.3698 | 3.9434×10-5 | 1.1 | 0.1 |
表5 模拟的基本参数
Table 5 Basic parameters of simulation
模拟类型 | 氮气密度 ρ/(kg/m3) | 气体动力黏度 μ/(Pa⋅s) | 进口压力 Pin/MPa | 出口压力 Pout/MPa |
---|---|---|---|---|
稳态 | 0.3698 | 3.9434×10-5 | 1.1 | 0.1 |
1 | 王双明, 孙强, 乔军伟, 等. 论煤炭绿色开采的地质保障[J]. 煤炭学报, 2020, 45(1): 8-15. |
Wang S M, Sun Q, Qiao J W, et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society, 2020, 45(1): 8-15. | |
2 | 中国石油集团经济技术研究院. 2021年国内外油气行业发展报告[M]. 北京: 石油工业出版社, 2022. |
CNPC Institute of Economic Technology. Report on Domestic and International Oil and Gas Industry in 2021[M]. Beijing: Petroleum Industry Press, 2022. | |
3 | 王韶华. 基于低碳经济的我国能源结构优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. |
Wang S H. Research on the optimization of China's energy structure based on low-carbon economy[D]. Harbin: Harbin Engineering University, 2013. | |
4 | Yang H, Ma L. Study on distribution law and occurrence characteristics of rich oil in Zichang Mining area[J]. World Scientific Research Journal, 2020,6(1). |
5 | 马丽, 王双明, 段中会, 等. 陕西省富油煤资源潜力及开发建议[J]. 煤田地质与勘探, 2022, 50(2): 1-8. |
Ma L, Wang S M, Duan Z H, et al. Potential of oil-rich coal resources in Shaanxi Province and its new development suggestion[J]. Coal Geology & Exploration, 2022, 50(2): 1-8. | |
6 | Clayton J L, Rice D D, Michael G E. Oil-generating coals of the San Juan Basin, new Mexico and Colorado, USA[J]. Organic Geochemistry, 1991, 17(6): 735-742. |
7 | Kang Z Q, Zhao Y S, Yang D. Review of oil shale in situ conversion technology[J]. Applied Energy, 2020, 269: 115121. |
8 | Xin C Y, Lu L, Shi B B, et al. Numerical investigation of local thermal non-equilibrium effects in coal porous media with cryogenic nitrogen injection[J]. International Journal of Thermal Sciences, 2018, 133: 32-40. |
9 | Wen H, Lu J H, Xiao Y, et al. Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield[J]. Thermochimica Acta, 2015, 619: 41-47. |
10 | 杨海平, 陈汉平, 鞠付栋, 等. 热解温度对神府煤热解与气化特性的影响[J]. 中国电机工程学报, 2008, 28(8): 40-45. |
Yang H P, Chen H P, Ju F D, et al. Influence of temperature on coal pyrolysis and char gasification[J]. Proceedings of the CSEE, 2008, 28(8): 40-45. | |
11 | 周长冰, 万志军, 张源, 等. 气煤热力耦合变形与孔隙演化特征的实验研究[J]. 中南大学学报(自然科学版), 2014, 45(7): 2440-2446. |
Zhou C B, Wan Z J, Zhang Y, et al. Experimental study on coupled thermo-mechanical deformation and pore evolution feature of gas coal[J]. Journal of Central South University (Science and Technology), 2014, 45(7): 2440-2446. | |
12 | Zhao Y X, Sun Y F, Liu S M, et al. Pore structure characterization of coal by NMR cryoporometry[J]. Fuel, 2017, 190: 359-369. |
13 | Zhang R, Ai T, Li H G, et al. 3D reconstruction method and connectivity rules of fracture networks generated under different mining layouts[J]. International Journal of Mining Science and Technology, 2013, 23(6): 863-871. |
14 | Fan N, Wang J R, Deng C B, et al. Quantitative characterization of coal microstructure and visualization seepage of macropores using CT-based 3D reconstruction[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103384. |
15 | Zhu L Q, Zhang C, Zhang C M, et al. Challenges and prospects of digital core-reconstruction research[J]. Geofluids, 2019, 2019: 7814180. |
16 | 王刚, 杨鑫祥, 张孝强, 等. 基于DTM阈值分割法的孔裂隙煤岩体瓦斯渗流数值模拟[J]. 岩石力学与工程学报, 2016, 35(1): 119-129. |
Wang G, Yang X X, Zhang X Q, et al. Numerical simulation of gas flow in pores and fissures of coal based on segmentation of DTM threshold[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(1): 119-129. | |
17 | Yao Y B, Liu D M, Che Y, et al. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography[J]. International Journal of Coal Geology, 2009, 80(2): 113-123. |
18 | Ni X M, Miao J, Lv R S, et al. Quantitative 3D spatial characterization and flow simulation of coal macropores based on μCT technology[J]. Fuel, 2017, 200: 199-207. |
19 | 乔俊程, 曾溅辉, 夏宇轩, 等. 微纳米孔隙网络中天然气充注的三维可视化物理模拟[J]. 石油勘探与开发, 2022, 49(2): 306-318. |
Qiao J C, Zeng J H, Xia Y X, et al. A three dimensional visualized physical simulation for natural gas charging in the micro-nano pore system[J]. Petroleum Exploration and Development, 2022, 49(2): 306-318. | |
20 | Wang G, Shen J N, Liu S M, et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104082. |
21 | Jing Y, Armstrong R T, Mostaghimi P. Digital coal: generation of fractured cores with microscale features[J]. Fuel, 2017, 207: 93-101. |
22 | 陆韬杰, 胥蕊娜, 姜培学. 基于低场核磁共振的煤粉动态吸附测量[J]. 化工学报, 2020, 71(S2): 195-200. |
Lu T J, Xu R N, Jiang P X. Dynamic adsorption measurement of coal particles based on low field NMR[J]. CIESC Journal, 2020, 71(S2): 195-200. | |
23 | 李伟, 要惠芳, 刘鸿福, 等. 基于显微CT的不同煤体结构煤三维孔隙精细表征[J]. 煤炭学报, 2014, 39(6): 1127-1132. |
Li W, Yao H F, Liu H F, et al. Advanced characterization of three-dimensional pores in coals with different coal-body structure by micro-CT[J]. Journal of China Coal Society, 2014, 39(6): 1127-1132. | |
24 | 范楠. 煤孔隙结构多尺度表征及其对瓦斯运移特性影响的实验研究[D]. 阜新: 辽宁工程技术大学, 2021. |
Fan N. Experimental study on multi-scale pore structure characterization of coal and its effect on gas migration characteristics[D]. Fuxin: Liaoning Technical University, 2021. | |
25 | 焦华喆, 王树飞, 吴爱祥, 等. 膏体浓密床层孔隙结构剪切演化与连通机理[J]. 中南大学学报(自然科学版), 2019, 50(5): 1173-1180. |
Jiao H Z, Wang S F, Wu A X, et al. Shear evolution and connected mechanism of pore structure in thickening bed of paste[J]. Journal of Central South University (Science and Technology), 2019, 50(5): 1173-1180. | |
26 | 苗杰. 低渗煤岩大孔隙结构三维重构及渗流模拟[D]. 焦作: 河南理工大学, 2017. |
Miao J. 3D reconstruction and seepage simulation of macropores structure in low permeability coal[D]. Jiaozuo: Henan Polytechnic University, 2017. | |
27 | 王刚, 沈俊男, 褚翔宇, 等. 基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J]. 煤炭学报, 2017, 42(8): 2074-2080. |
Wang G, Shen J N, Chu X Y, et al. Characterization and analysis of pores and fissures of high-rank coal based on CT three-dimensional reconstruction[J]. Journal of China Coal Society, 2017, 42(8): 2074-2080. | |
28 | 申艳军, 王旭, 赵春虎, 等. 榆神府矿区富油煤多尺度孔隙结构特征[J]. 煤田地质与勘探, 2021, 49(3): 33-41. |
Shen Y J, Wang X, Zhao C H, et al. Experimental study on multi-scale pore structure characteristics of tar-rich coal in Yushenfu mining area[J]. Coal Geology & Exploration, 2021, 49(3): 33-41. | |
29 | 王志国, 冯艳, 杨文哲, 等. 基于REV的孔隙型多孔介质导热分析模型[J]. 化工学报, 2020, 71(S2): 118-126. |
Wang Z G, Feng Y, Yang W Z, et al. Thermal conductivity analysis model of porous media based on REV[J]. CIESC Journal, 2020, 71(S2): 118-126. | |
30 | 师庆民, 王双明, 王生全, 等. 神府南部延安组富油煤多源判识规律[J]. 煤炭学报, 2022, 47(5): 2057-2066. |
Shi Q M, Wang S M, Wang S Q, et al. Multi-source identification and internal relationship of tar-rich coal of the Yan'an formation in the south of Shenfu[J]. Journal of China Coal Society, 2022, 47(5): 2057-2066. | |
31 | 陈书荣, 王达健, 张雄飞, 等. 多孔介质孔隙结构的网络模型应用[J]. 计算机与应用化学, 2001, 18(S1): 531-535. |
Chen S R, Wang D J, Zhang X F, et al. Applications of network models for pore structure medias[J]. Computers and Applied Chemistry, 2001, 18(S1): 531-535. | |
32 | 高慧梅, 姜汉桥, 陈民锋. 多孔介质孔隙网络模型的应用现状[J]. 大庆石油地质与开发, 2007, 26(2): 74-79. |
Gao H M, Jiang H Q, Chen M F. Application on pore network model of porous media[J]. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(2): 74-79. | |
33 | 马斌, 马跃征, 史琳. 孔隙特性参数对排驱过程影响的实验研究[J]. 化工学报, 2018, 69(8): 3436-3442. |
Ma B, Ma Y Z, Shi L. Experimental study on pore characters effect on drainage process[J]. CIESC Journal, 2018, 69(8): 3436-3442. | |
34 | 尹升华, 王雷鸣, 陈勋, 等. 不同堆体结构下矿岩散体内溶液渗流规律[J]. 中南大学学报(自然科学版), 2018, 49(4): 949-956. |
Yin S H, Wang L M, Chen X, et al. Seepage law of solution inside ore granular under condition of different heap constructions[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 949-956. | |
35 | 车禹恒. 基于X-ray μCT扫描的煤孔隙瓦斯微观渗流各向异性特征研究[J]. 矿业安全与环保, 2021, 48(4): 12-17. |
Che Y H. Research on the anisotropic characteristics of gas microscopic seepage in coal pores based on X-ray μCT scanning[J]. Mining Safety & Environmental Protection, 2021, 48(4): 12-17. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[15] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 836
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 414
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||