化工学报 ›› 2021, Vol. 72 ›› Issue (4): 1796-1814.DOI: 10.11949/0438-1157.20201171
袁旭东1,2(),贾磊1,2,周到1,2,赵盼盼1,2,吴俊峰1,2,王汝金1,2
收稿日期:
2020-08-17
修回日期:
2020-11-24
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
袁旭东
作者简介:
袁旭东(1987—),男,博士,副研究员,基金资助:
YUAN Xudong1,2(),JIA Lei1,2,ZHOU Dao1,2,ZHAO Panpan1,2,WU Junfeng1,2,WANG Rujin1,2
Received:
2020-08-17
Revised:
2020-11-24
Online:
2021-04-05
Published:
2021-04-05
Contact:
YUAN Xudong
摘要:
临界热通量(CHF)是微通道流动沸腾换热的限制参数之一,当热通量大于CHF时,换热性能急剧恶化,换热设备易发生烧毁与故障,因此CHF对于微通道换热的安全运行具有重要影响。微通道换热是目前电子冷却的主流技术,然而近年来电子设备热通量不断提高,CHF已成为限制微通道应用的关键参数之一。针对微通道CHF的研究进展,详细阐述微通道CHF的形成机理,分析工况参数和通道尺寸对微通道CHF的影响机制,总结微通道CHF的预测模型,详述微通道CHF提升的各类技术方法与原理,探讨学术界观点差异和今后研究方向。该综述为微通道在高热通量条件下安全可靠运行提供了研究借鉴。
中图分类号:
袁旭东,贾磊,周到,赵盼盼,吴俊峰,王汝金. 微通道临界热通量的基础理论与提升技术研究进展[J]. 化工学报, 2021, 72(4): 1796-1814.
YUAN Xudong,JIA Lei,ZHOU Dao,ZHAO Panpan,WU Junfeng,WANG Rujin. Research progress on basic theory and improvement technology for critical heat flux of microchannel[J]. CIESC Journal, 2021, 72(4): 1796-1814.
1 | Sarlak A, Ahmadpour A, Hajmohammadi M R. Thermal design improvement of a double-layered microchannel heat sink by using multi-walled carbon nanotube (MWCNT) nanofluids with non-Newtonian viscosity[J]. Applied Thermal Engineering, 2019, 147: 205-215. |
2 | Garimella S V. Advances in mesoscale thermal management technologies for microelectronics[J]. Microelectronics Journal, 2006, 37(11): 1165-1185. |
3 | 过增元. 国际传热研究前沿: 微细尺度传热[J]. 力学进展, 2000, 30(1): 1-6. |
Guo Z Y. Frontier of heat transfer─microscale heat transfer[J]. Advances in Mechanics, 2000, 30(1): 1-6. | |
4 | Sohel Murshed S M, Nieto de Castro C A. A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 821-833. |
5 | Dahiya R S, Adami A, Pinna L, et al. Tactile sensing chips with POSFET array and integrated interface electronics[J]. IEEE Sensors Journal, 2014, 14(10): 3448-3457. |
6 | 姚鑫宇, 程潇, 王晗, 等. 铜基正弦波微通道内流动沸腾传热特性试验研究[J]. 化工学报, 2020, 71(4): 1502-1509. |
Yao X Y, Cheng X, Wang H, et al. Experimental investigation on flow boiling heat transfer in sinusoidal wavy copper microchannels[J]. CIESC Journal, 2020, 71(4): 1502-1509. | |
7 | 申宇, 潘振海, 吴慧英. 方肋微通道内流动沸腾的气泡动态与传热特性分析[J]. 化工进展, 2020, 39(7): 2548-2555. |
Shen Y, Pan Z H, Wu H Y. Analysis of bubble dynamics and heat transfer characteristics during flow boiling in square-fin microchannels[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2548-2555. | |
8 | Mudawar I. Two-phase micro-channel heat sinks: theory, applications and limitations [J]. Journal of Electronic Packaging, 2011, 133(4): 041002-1-041002-31. |
9 | Kim S M, Mudawar I. Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows[J]. International Journal of Heat and Mass Transfer, 2014, 77: 627-652. |
10 | Kim S M, Mudawar I. Review of databases and predictive methods for pressure drop in adiabatic, condensing and boiling mini/micro-channel flows[J]. International Journal of Heat and Mass Transfer, 2014, 77: 74-97. |
11 | Naqiuddin N H, Saw L H, Yew M C, et al. Overview of micro-channel design for high heat flux application[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 901-914. |
12 | Liang G T, Mudawar I. Review of channel flow boiling enhancement by surface modification, and instability suppression schemes[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118864. |
13 | Prajapati Y K, Bhandari P. Flow boiling instabilities in microchannels and their promising solutions — a review[J]. Experimental Thermal and Fluid Science, 2017, 88: 576-593. |
14 | O'Neill L E, Mudawar I. Review of two-phase flow instabilities in macro- and micro-channel systems[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119738. |
15 | 周继军, 徐进良, 甘云华, 等. 微通道中临界热流密度的实验研究[J]. 自然科学进展, 2005, 15(5): 585-590. |
Zhou J J, Xu J L, Gan Y H, et, al. Experimental study on critical heat flux in microchannels [J]. Progress in Natural Science, 2005, 15(5): 585-590. | |
16 | Mishima K, Hibiki T. Some characteristics of air-water two-phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow, 1996, 22(4): 703-712. |
17 | Chen T L, Garimella S V. A study of critical heat flux during flow boiling in microchannel heat sinks[J]. Journal of Heat Transfer, 2012, 134(1): 011504. |
18 | Martin-Callizo C, Ali R, Palm B. Dryout incipience and critical heat flux in saturated flow boiling of refrigerants in a vertical uniformly heated microchannel[C]//Proceedings of ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. Darmstadt, Germany, 2009: 705-712. |
19 | Revellin R, Thome J R. A theoretical model for the prediction of the critical heat flux in heated microchannels[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1216-1225. |
20 | Koşar A, Peles Y. Critical heat flux of R-123 in silicon-based microchannels[J]. Journal of Heat Transfer, 2007, 129(7): 844-851. |
21 | Qu W L, Mudawar I. Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 2004, 47(10/11): 2045-2059. |
22 | Koşar A, Kuo C J, Peles Y. Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors[J]. Journal of Heat Transfer, 2006, 128(3): 251-260. |
23 | Wojtan L, Revellin R, Thome J R. Investigation of saturated critical heat flux in a single, uniformly heated microchannel[J]. Experimental Thermal and Fluid Science, 2006, 30(8): 765-774. |
24 | Lee J, Mudawar I. Critical heat flux for subcooled flow boiling in micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 3341-3352. |
25 | Koşar A, Kuo C J, Peles Y. Reduced pressure boiling heat transfer in rectangular microchannels with interconnected reentrant cavities[J]. Journal of Heat Transfer, 2005, 127(10): 1106-1114. |
26 | Ahmed W H, El-Nakla M A, Ismail B I. Towards understanding the critical heat flux for industrial applications[J]. International Journal of Multiphase Flow, 2010, 36(3): 153-165. |
27 | Lu D H, Wen Q L, Liu T, et al. A critical heat flux experiment with water flow at low pressures in thin rectangular channels[J]. Nuclear Engineering and Design, 2014, 278: 669-678. |
28 | Thorncroft G E, Klausner J F, Mei R. An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling[J]. International Journal of Heat and Mass Transfer, 1998, 41(23): 3857-3871. |
29 | Noh S W, Suh K Y. Critical heat flux in various inclined rectangular straight surface channels[J]. Experimental Thermal and Fluid Science, 2014, 52: 1-11. |
30 | Koşar A, Kuo C J, Peles Y. Boiling heat transfer in rectangular microchannels with reentrant cavities[J]. International Journal of Heat and Mass Transfer, 2005, 48(23/24): 4867-4886. |
31 | Bowers M B, Mudawar I. High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 1994, 37(2): 321-332. |
32 | Kharangate C R, O'Neill L E, Mudawar I, et al. Effects of subcooling and two-phase inlet on flow boiling heat transfer and critical heat flux in a horizontal channel with one-sided and double-sided heating[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1187-1205. |
33 | 张瑞达, 罗小平, 王维. 微槽道纳米流体饱和沸腾CHF特性研究[J]. 低温与超导, 2013, 41(6): 75-80. |
Zhang R D, Luo X P, Wang W. Study on the saturated boiling critical heat flux characteristics of nano-fluids in microchannels[J]. Cryogenics & Superconductivity, 2013, 41(6): 75-80. | |
34 | Park J E, Thome J R. Critical heat flux in multi-microchannel copper elements with low pressure refrigerants[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3): 110-122. |
35 | 李冈, 宋保银, 张钊, 等. 加热方位对流动沸腾临界热流密度影响[J]. 制冷学报, 2015, 36(3): 34-40. |
Li G, Song B Y, Zhang Z, et al. Effect of heating orientation on the critical heat flux of flow boiling[J]. Journal of Refrigeration, 2015, 36(3): 34-40. | |
36 | Zhang Z, Song B Y, Li G, et al. Effect of dynamic load on water flow boiling CHF in rectangular channels[J]. Heat and Mass Transfer, 2018, 54(6): 1593-1601. |
37 | 宋军辉, 宋保银, 张钊, 等. 逆载对管道内汽水两相流临界热流密度的影响[J]. 北京航空航天大学学报, 2017, 43(4): 842-848. |
Song J H, Song B Y, Zhang Z, et al. Effect of inverse load on critical heat flux of steam-water two-phase flow in a tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 842-848. | |
38 | Qi S L, Zhang P, Wang R Z, et al. Flow boiling of liquid nitrogen in micro-tubes (Ⅱ): Heat transfer characteristics and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50(25/26): 5017-5030. |
39 | 张瑞达. 制冷系统中微通道流动沸腾传热特性研究[D]. 广州: 华南理工大学, 2014. |
Zhang R D. Study on the flow boiling heat transfer characteristics in microchannels of refrigeration system[D]. Guangzhou: South China University of Technology, 2014. | |
40 | Juarsa M, Putra N, Septiadi W N, et al. Experimental study on the effect of gap size to CCFL and CHF in a vertical of narrow rectangular channel during quenching process[J]. Annals of Nuclear Energy, 2014, 72: 391-400. |
41 | Tanaka F, Hibiki T, Mishima K. Correlation for flow boiling critical heat flux in thin rectangular channels [J]. Journal of Heat Transfer, 2009, 131(12): 315-320. |
42 | Koşar A. A model to predict saturated critical heat flux in minichannels and microchannels[J]. International Journal of Thermal Sciences, 2009, 48(2): 261-270. |
43 | 罗小平, 唐杨. 矩形微槽道饱和沸腾临界热流密度特性[J]. 低温与超导, 2010, 38(6): 66-70. |
Luo X P, Tang Y. Properties of saturated flow boiling critical heat flux through rectangular micro-channel[J]. Cryogenics & Superconductivity, 2010, 38(6): 66-70. | |
44 | 罗小平, 唐杨, 程炜. 矩形微槽道纳米流体饱和沸腾临界热流密度特性[J]. 低温与超导, 2010, 38(9): 76-80. |
Luo X P, Tang Y, Cheng W. Properties of saturated flow boiling critical heat flux of nanofluids through rectangular micro-channel[J]. Cryogenics and Superconductivity, 2010, 38(9): 76-80. | |
45 | Ong C L, Thome J R. Macro-to-microchannel transition in two-phase flow (Ⅱ): Flow boiling heat transfer and critical heat flux[J]. Experimental Thermal and Fluid Science, 2011, 35(6): 873-886. |
46 | Katto Y. A generalized correlation of critical heat flux for the forced convection boiling in vertical uniformly heated round tubes[J]. International Journal of Heat and Mass Transfer, 1978, 21(12): 1527-1542. |
47 | Zhang W, Hibiki T, Mishima K, et al. Correlation of critical heat flux for flow boiling of water in mini-channels[J]. International Journal of Heat and Mass Transfer, 2006, 49(5/6): 1058-1072. |
48 | Basu S, Ndao S, Michna G J, et al. Flow boiling of R134a in circular microtubes (Ⅱ): Study of critical heat flux condition[J]. Journal of Heat Transfer, 2011, 133(5): 051503. |
49 | Wu Z, Li W, Ye S. Correlations for saturated critical heat flux in microchannels[J]. International Journal of Heat and Mass Transfer, 2011, 54(1/2/3): 379-389. |
50 | Katto Y, Ohno H. An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes[J]. International Journal of Heat and Mass Transfer, 1984, 27(9): 1641-1648. |
51 | Agostini B, Revellin R, Thome J R, et al. High heat flux flow boiling in silicon multi-microchannels (Ⅲ): Saturated critical heat flux of R236fa and two-phase pressure drops[J]. International Journal of Heat and Mass Transfer, 2008, 51(21/22): 5426-5442. |
52 | 张钊. 过载对窄通道内汽-水两相流动沸腾临界热流密度影响研究[D]. 南京: 南京航空航天大学, 2018. |
Zhang Z. A study of effect of dynamic load on steam-water two-phase flow boiling critical heat flux in narrow rectangular channels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. | |
53 | Vafaei S, Wen D S. Critical heat flux of nanofluids inside a single microchannel: experiments and correlations[J]. Chemical Engineering Research and Design, 2014, 92(11): 2339-2351. |
54 | Wang Y, Deng K H, Wu J M, et al. The characteristics and correlation of nanofluid flow boiling critical heat flux[J]. International Journal of Heat and Mass Transfer, 2018, 122: 212-221. |
55 | DolatiAsl K, Bakhshan Y, Abedini E, et al. Correlations for estimating critical heat flux (CHF) of nanofluid flow boiling[J]. International Journal of Heat and Mass Transfer, 2019, 139: 69-76. |
56 | 葛琪林, 柳建华, 张良, 等. R290微通道内沸腾换热实验研究[J]. 热能动力工程, 2015, 30(5): 672-677, 817. |
Ge Q L, Liu J H, Zhang L, et al. Experimental study of the boiling heat exchange of R290 inside a micro-channel[J]. Journal of Engineering for Thermal Energy and Power, 2015, 30(5): 672-677, 817. | |
57 | Li H P, Hrnjak P. Heat transfer and pressure drop of R32 evaporating in one pass microchannel tube with parallel channels[J]. International Journal of Heat and Mass Transfer, 2018, 127: 526-540. |
58 | Li H P, Hrnjak P. Heat transfer coefficient, pressure drop, and flow patterns of R1234ze(E) evaporating in microchannel tube[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1368-1386. |
59 | 罗小平, 李海燕. 粗糙度对微细通道纳米流体临界热流密度(CHF)和不稳定性的影响[J]. 化工进展, 2017, 36(11): 3947-3954. |
Luo X P, Li H Y. Effect of surface roughness on nanofluid critical heat fluxes (CHF) in rectangular microchannels and instability[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 3947-3954. | |
60 | Vafaei S, Wen D S. Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel[J]. Journal of Heat Transfer, 2010, 132(10): 1-7. |
61 | Vafaei S, Wen D S. Flow boiling heat transfer of alumina nanofluids in single microchannels and the roles of nanoparticles[J]. Journal of Nanoparticle Research, 2011, 13(3): 1063-1073. |
62 | Paul G, Das P K, Manna I. Assessment of the process of boiling heat transfer during rewetting of a vertical tube bottom flooded by alumina nanofluid[J]. International Journal of Heat and Mass Transfer, 2016, 94: 390-402. |
63 | Morshed A K M M, Paul T C, Khan J A. Effect of Al2O3 nanoparticle deposition on flow boiling performance of water in a microchannel[J]. Experimental Thermal and Fluid Science, 2013, 47: 6-13. |
64 | Tanaka K, Abe Y, Nakagawa M, et al. Low-gravity experiments of lightweight flexible heat pipe panels with self-rewetting fluids[J]. Annals of the New York Academy of Sciences, 2009, 1161(1): 554-561. |
65 | Sakashita H, Ono A, Nakabayashi Y. Measurements of critical heat flux and liquid-vapor structure near the heating surface in pool boiling of 2-propanol/water mixtures[J]. International Journal of Heat and Mass Transfer, 2010, 53(7/8): 1554-1562. |
66 | Li Y F, Yoda M. An experimental study of buoyancy-Marangoni convection in confined and volatile binary fluids[J]. International Journal of Heat and Mass Transfer, 2016, 102: 369-380. |
67 | Lin P H, Fu B R, Pan C. Critical heat flux on flow boiling of methanol-water mixtures in a diverging microchannel with artificial cavities[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3156-3166. |
68 | Fujita Y, Bai Q. Critical heat flux of binary mixtures in pool boiling and its correlation in terms of Marangoni number[J]. International Journal of Refrigeration, 1997, 20(8): 616-622. |
69 | Fu B R, Tsou M S, Pan C. Boiling heat transfer and critical heat flux of ethanol-water mixtures flowing through a diverging microchannel with artificial cavities[J]. International Journal of Heat and Mass Transfer, 2012, 55(5/6): 1807-1814. |
70 | Wang G Q, Xie Z W, Tan Y K. Nucleate pool boiling of pure liquids and binary mixtures (Ⅱ): Analytical model for boiling heat transfer of binary mixtures on smooth tubes and comparison of analytical models for both pure liquids and binary mixtures with experimental data[J]. Journal of Thermal Science, 1996, 5(3): 201-209. |
71 | Wu D, Marcinichen J B, Thome J R. Experimental evaluation of a controlled hybrid two-phase multi-microchannel cooling and heat recovery system driven by liquid pump and vapor compressor[J]. International Journal of Refrigeration, 2013, 36(2): 375-389. |
72 | Chu K H, Soo J Y, Enright R, et al. Hierarchically structured surfaces for boiling critical heat flux enhancement [J]. Applied Physics Letters, 2013,102: 151602. |
73 | Wang L S, Khan A R, Erkan N, et al. Critical heat flux enhancement on a downward face using porous honeycomb plate in saturated flow boiling[J]. International Journal of Heat and Mass Transfer, 2017, 109: 454-461. |
74 | Yang F H, Li W M, Dai X M, et al. Flow boiling heat transfer of HFE-7000 in nanowire-coated microchannels[J]. Applied Thermal Engineering, 2016, 93: 260-268. |
75 | Byon C, Choi S, Kim S J. Critical heat flux of bi-porous sintered copper coatings in FC-72[J]. International Journal of Heat and Mass Transfer, 2013, 65: 655-661. |
76 | Jaikumar A, Kandlikar S G. Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 88: 652-661. |
77 | Morshed A K M M, Paul T C, Khan J. Effect of Cu-Al2O3 nanocomposite coating on flow boiling performance of a microchannel[J]. Applied Thermal Engineering, 2013, 51(1/2): 1135-1143. |
78 | Kumar S C S, Suresh S, Praveen A S, et al. Effect of surfactant addition on hydrophilicity of ZnO-Al2O3 composite and enhancement of flow boiling heat transfer[J]. Experimental Thermal and Fluid Science, 2016, 70: 325-334. |
79 | 宇高義郎, 郭嘉翔, 陈志豪. 微通道流动沸腾过程中异态相干沸腾的强化传热研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(9): 917-923. |
Utaka Y, Guo J X, Chen Z H. Enhanced heat transfer of different-mode-interacting boiling in microchannel flow boiling[J]. Journal of Tianjin University (Science and Technology), 2020, 53(9): 917-923. | |
80 | 王迎慧, 朱静, 盛林弘毅. V形凹槽对微通道流动沸腾临界热流密度的影响[J]. 江苏大学学报(自然科学版), 2018, 39(2): 149-154. |
Wang Y H, Zhu J, Shenglin H Y. Effects of V groove on critical heat flux of flow boiling in microchannel[J]. Journal of Jiangsu University (Natural Science Edition), 2018, 39(2): 149-154. | |
81 | Kuo C J, Peles Y. Local measurement of flow boiling in structured surface microchannels[J]. International Journal of Heat and Mass Transfer, 2007, 50(23/24): 4513-4526. |
82 | Zhou S Y, Xu X Q, Sammakia B G. Modeling of boiling flow in microchannels for nucleation characteristics and performance optimization[J]. International Journal of Heat and Mass Transfer, 2013, 64: 706-718. |
83 | 王乐, 翁建华. 微柱群流动及换热研究进展[J]. 化工进展, 2020, 39(11): 4330-4341. |
Wang L, Weng J H. Research progress of flow and heat transfer in micro-pin-fins[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4330-4341. | |
84 | Kim D E, Yu D I, Park S C, et al. Critical heat flux triggering mechanism on micro-structured surfaces: coalesced bubble departure frequency and liquid furnishing capability[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1237-1247. |
85 | 冯振飞, 罗小平, 郭峰, 等. 微柱体对微通道热沉综合性能影响的数值分析[J]. 中国石油大学学报(自然科学版), 2017, 41(3): 122-128. |
Feng Z F, Luo X P, Guo F, et al. Effects of micro-cylinders on overall performance of micro-channel heat sinks: numerical simulation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(3): 122-128. | |
86 | Deng D X, Wan W, Qin Y, et al. Flow boiling enhancement of structured microchannels with micro pin fins[J]. International Journal of Heat and Mass Transfer, 2017, 105: 338-349. |
87 | 李慧君, 郭保仓, 杜保周, 等. 微柱群通道内饱和沸腾换热特性实验研究[J]. 制冷学报, 2018, 39(3): 44-50. |
Li H J, Guo B C, Du B Z, et al. Experimental study of saturated flow boiling heat transfer in an array of micro-pin-fins[J]. Journal of Refrigeration, 2018, 39(3): 44-50. | |
88 | 周刊, 李蔚, 李俊业, 等. 微细通道内超亲水改性表面饱和沸腾的传热特性[J]. 化工学报, 2018, 69: 82-88. |
Zhou K, Li W, Li J Y, et al. Flow boiling heat transfer characteristics of superhydrophilic modified surface in microchannels[J]. CIESC Journal, 2018, 69: 82-88. | |
89 | Li W, Chen Z C, Li J Y, et al. Subcooled flow boiling on hydrophilic and super-hydrophilic surfaces in microchannel under different orientations[J]. International Journal of Heat and Mass Transfer, 2019, 129: 635-649. |
90 | Kim J, Lee J S. Numerical study on the effects of inertia and wettability on subcooled flow boiling in microchannels[J]. Applied Thermal Engineering, 2019, 152: 175-183. |
91 | 孔新, 魏进家, 张永海. 亲疏水表面换热性能及其沸腾现象的微细化研究[J]. 工程热物理学报, 2018, 39(6): 1373-1378. |
Kong X, Wei J J, Zhang Y H. Investigation on heat transfer performance and micronization boiling phenomenon of hydrophilic/hydrophobic surfaces[J]. Journal of Engineering Thermophysics, 2018, 39(6): 1373-1378. | |
92 | 柴永志, 张伟, 李亚, 等. 非均匀润湿性微通道表面池沸腾换热特性[J]. 化工学报, 2017, 68(5): 1852-1859. |
Chai Y Z, Zhang W, Li Y, et al. Pool boiling heat transfer on heterogeneous wetting microchannel surfaces[J]. CIESC Journal, 2017, 68(5): 1852-1859. | |
93 | Prajapati Y K, Pathak M, Kaleem K M. A comparative study of flow boiling heat transfer in three different configurations of microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 85: 711-722. |
94 | Prajapati Y K, Pathak M, Khan M K. Bubble dynamics and flow boiling characteristics in three different microchannel configurations[J]. International Journal of Thermal Sciences, 2017, 112: 371-382. |
95 | Prajapati Y K, Pathak M, Khan M K. Transient heat transfer characteristics of segmented finned microchannels[J]. Experimental Thermal and Fluid Science, 2016, 79: 134-142. |
96 | Kandlikar S G, Widger T, Kalani A, et al. Enhanced flow boiling over open microchannels with uniform and tapered gap manifolds[J]. Journal of Heat Transfer, 2013, 135(6): 213-220. |
97 | Yin L F, Jiang P X, Xu R N, et al. Visualization of flow patterns and bubble behavior during flow boiling in open microchannels[J]. International Communications in Heat and Mass Transfer, 2017, 85: 131-138. |
98 | 党超, 贾力, 杞卓琳, 等. 通道结构强化微通道流动沸腾流动与传热[J]. 科学通报, 2019, 64(23): 2450-2462. |
Dang C, Jia L, Qi Z L, et al. Flow and heat transfer characteristics of microchannel flow boiling enhancement with channel configurations[J]. Chinese Science Bulletin, 2019, 64(23): 2450-2462. | |
99 | Dai X M, Yang F H, Fang R X, et al. Enhanced single- and two-phase transport phenomena using flow separation in a microgap with copper woven mesh coatings[J]. Applied Thermal Engineering, 2013, 54(1): 281-288. |
100 | Loganathan R, Mohiuddin A, Gedupudi S. Experimental investigation of the effect of bypass inlet on flow boiling in a mini/micro-channel[J]. International Communications in Heat and Mass Transfer, 2020, 110: 104405. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[8] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[9] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[10] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[11] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||