化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 122-131.DOI: 10.11949/0438-1157.20221567
苏伟1(), 马东旭1, 金旭1(
), 刘忠彦1, 张小松2
收稿日期:
2022-11-05
修回日期:
2022-12-23
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
金旭
作者简介:
苏伟(1986—),男,博士,副教授,weisu@neepu.edu.cn
基金资助:
Wei SU1(), Dongxu MA1, Xu JIN1(
), Zhongyan LIU1, Xiaosong ZHANG2
Received:
2022-11-05
Revised:
2022-12-23
Online:
2023-06-05
Published:
2023-09-27
Contact:
Xu JIN
摘要:
霜层传递是表面冷凝结霜初期一个关键环节,在整个表面结霜过程中至关重要。为研究冷凝结霜过程中表面润湿性能与霜晶传播过程、速度的关系,搭建了微观可视化结霜实验测试平台,根据实验所需制备了三种不同润湿性能的高反射率表面。表面霜层传递过程大致分为两个阶段,即液滴内霜晶传播和液滴间冰桥传播。实验发现影响冰桥传播速度的主要原因是冰桥与液滴的间距L。当冰桥与液滴间距由16 μm减小为2 μm时,冰桥传播速度从2 μm/s快速地升至12 μm/s。测试了不同润湿性能表面上冷凝结霜过程和霜层的整体传递速度,研究发现,超疏水表面凝结液滴的分布特征和冰桥传播系数的明显差异是导致超疏水表面结霜过程中霜层传递缓慢的主要原因。揭示了影响霜层传递以及抑制结霜的关键因素,即超疏水表面液滴尺寸分布特性,为抑霜表面的设计和优化提供了思路和基础。
中图分类号:
苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131.
Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics[J]. CIESC Journal, 2023, 74(S1): 122-131.
1 | Wang F, Liang C H, Zhang X S. Research of anti-frosting technology in refrigeration and air conditioning fields: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 707-722. |
2 | Zhao Y, Guo Q, Lin T, et al. A review of recent literature on icing phenomena: transport mechanisms, their modulations and controls[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120074. |
3 | 冯欣楠, 鲁志伟, 梁记云, 等. 基于三维模型法500 kV交流输电线路绕击耐雷性能分析[J]. 东北电力大学学报, 2022, 42(1): 87-95. |
Feng X N, Lu Z W, Liang J Y, et al. Analysis of lightning protection performance of 500 kV AC transmission lines based on three-dimensional model method[J]. Journal of Northeast Electric Power University, 2022, 42(1): 87-95. | |
4 | 陈子丹, 罗会龙, 刘锦春, 等. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036. |
Chen Z D, Luo H L, Liu J C, et al. Analysis of heating performance of CO2 air-source heat pump in cold region[J]. CIESC Journal, 2018, 69(9): 4030-4036. | |
5 | 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613. |
Qiu J J, Zhang X S, Li W H. Experimental research on a novel frost-free air source heat pump system[J]. CIESC Journal, 2019, 70(4): 1605-1613. | |
6 | Xu W, Liu C P, Li A G, et al. Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China[J]. Renewable Energy, 2020, 146: 2124-2133. |
7 | 宋孟杰, 毛宁, 雷尚文, 等. 空气源热泵逆循环除霜优化研究现状与发展趋势[J]. 东北电力大学学报, 2021, 41(2): 1-19. |
Song M J, Mao N, Lei S W, et al. Research status and trends on reverse cycle defrosting for air source heat pump units[J]. Journal of Northeast Electric Power University, 2021, 41(2): 1-19. | |
8 | Su W, Li W H, Sun B, et al. Experimental study and correlations for heat and mass transfer coefficients in the dehumidifier of a frost-free heat pump system[J]. International Journal of Heat and Mass Transfer, 2019, 131: 450-462. |
9 | Wang Z H, Zheng Y X, Wang F H, et al. Experimental analysis on a novel frost-free air-source heat pump water heater system[J]. Applied Thermal Engineering, 2014, 70(1): 808-816. |
10 | 宫静, 王松庆, 唐天跻. 严寒地区高速公路建筑空气-土壤源热泵系统节能性运行策略研究[J]. 东北电力大学学报, 2021, 41(3): 63-68. |
Gong J, Wang S Q, Tang T J. Study on the efficiency operation strategy of air ground source heat pump system for highway construction in severe cold area[J]. Journal of Northeast Electric Power University, 2021, 41(3): 63-68. | |
11 | 刘中良, 黄玲艳, 勾昱君, 等. 结霜现象及抑霜技术的研究进展[J]. 制冷学报, 2010, 31(4): 1-6, 13. |
Liu Z L, Huang L Y, Gou Y J, et al. A review on frost formation and anti-frosting technology[J]. Journal of Refrigeration, 2010, 31(4): 1-6, 13. | |
12 | Song M J, Xia L, Deng S M. A modeling study on alleviating uneven defrosting for a vertical three-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting[J]. Applied Energy, 2016, 161: 268-278. |
13 | Zhang Q L, Zhang L, Nie J Z, et al. Techno-economic analysis of air source heat pump applied for space heating in Northern China[J]. Applied Energy, 2017, 207: 533-542. |
14 | Léoni A, Mondot M, Durier F, et al. State-of-the-art review of frost deposition on flat surfaces[J]. International Journal of Refrigeration, 2016, 68: 198-217. |
15 | Kreder M J, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: smooth, textured or slippery?[J]. Nature Reviews Materials, 2016, 1: 15003. |
16 | Jeevahan J, Chandrasekaran M, Joseph G B, et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250. |
17 | Boreyko J B, Collier C P. Delayed frost growth on jumping-drop superhydrophobic surfaces[J]. ACS Nano, 2013, 7(2): 1618-1627. |
18 | Nath S, Ahmadi S F, Boreyko J B. A review of condensation frosting[J]. Nanoscale and Microscale Thermophysical Engineering, 2017, 21(2): 81-101. |
19 | Zhao Y G, Yang C. Frost spreading on microscale wettability/morphology patterned surfaces[J]. Applied Thermal Engineering, 2017, 121: 136-145. |
20 | Boreyko J B, Hansen R R, Murphy K R, et al. Controlling condensation and frost growth with chemical micropatterns[J]. Scientific Reports, 2016, 6: 19131. |
21 | 牛蒙科, 韩芳明, 杨旭, 等. 基于TRNSYS的河水源热泵与电锅炉复合供暖系统仿真研究[J]. 东北电力大学学报, 2022, 42(6): 15-20. |
Niu M K, Han F M, Yang X, et al. Simulation research on combined heating system of river water source heat pump and electric boiler based on TRNSYS[J]. Journal of Northeast Electric Power University, 2022, 42(6): 15-20. | |
22 | Jin Y K, He Z Y, Guo Q, et al. Control of ice propagation by using polyelectrolyte multilayer coatings[J]. Angewandte Chemie (International Ed. In English), 2017, 56(38): 11436-11439. |
23 | Kim J, Jeon J, Kim D R, et al. Quantitative analysis of anti-freezing characteristics of superhydrophobic surfaces according to initial ice nuclei formation time and freezing propagation velocity[J]. International Journal of Heat and Mass Transfer, 2018, 126: 109-117. |
24 | Chu F Q, Lin Y K, Yan X, et al. Quantitative relations between droplet jumping and anti-frosting effect on superhydrophobic surfaces[J]. Energy and Buildings, 2020, 225:110315. |
25 | Yang S Y, Wu C Y, Zhao G L, et al. Condensation frosting and passive anti-frosting[J]. Cell Reports Physical Science, 2021, 2(7): 100474. |
26 | Nath S, Bisbano C E, Yue P T, et al. Duelling dry zones around hygroscopic droplets[J]. Journal of Fluid Mechanics, 2018, 853: 601-620. |
27 | Esmeryan K D, Castano C E, Mohammadi R, et al. Delayed condensation and frost formation on superhydrophobic carbon soot coatings by controlling the presence of hydrophilic active sites[J]. Journal of Physics D: Applied Physics, 2018, 51(5): 55302. |
28 | Chavan S, Park D, Singla N, et al. Effect of latent heat released by freezing droplets during frost wave propagation[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(22): 6636-6644. |
29 | 苏伟. 空气源热泵抑霜机理及无霜热泵的初步探索[D]. 南京: 东南大学, 2019. |
Su W. Study on mechanism of frost suppression on air-source heat pump and preliminary study on frost-free heat pump[D]. Nanjing: Southeast University, 2019. | |
30 | Nath S, Boreyko J B. On localized vapor pressure gradients governing condensation and frost phenomena[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(33): 8350-8365. |
31 | Faghri A, Zhang Y W, Howell J. Advanced Heat and Mass Transfer[M]. Columbia: Global Digital Press, 2010. |
[1] | 董可豪, 周敬之, 周峰, 陈海家, 淮秀兰, 李栋. 超薄空间复杂边界条件下气体流动压降实验[J]. 化工学报, 2024, 75(7): 2505-2521. |
[2] | 徐嘉宇, 陈飞国, 徐骥, 葛蔚. 颗粒体系的多尺度混合指数[J]. 化工学报, 2024, 75(6): 2214-2221. |
[3] | 王禹丹, 徐晨, 阮达, 春江, 马学虎. V形沟槽纳米线团簇表面的毛细抽吸-补液蒸发传热特性研究[J]. 化工学报, 2024, 75(10): 3424-3436. |
[4] | 王法军, 陈安, 徐建鸿. 微反应器内颜料红57连续化合成工艺[J]. 化工学报, 2024, 75(10): 3600-3609. |
[5] | 李亚婷, 王忠东, 董艳鹏, 朱春英, 马友光, 付涛涛. 微通道中毛细流动及其工程应用的研究进展[J]. 化工学报, 2024, 75(1): 159-170. |
[6] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[7] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[8] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[9] | 杨霄, 丁锐, 李墨含, 宋正昶. 氧浓度对微通道内甲烷均相/非均相耦合反应特性的影响[J]. 化工学报, 2022, 73(12): 5427-5437. |
[10] | 刘冉, 李杰, 王玉兵, 詹洪波, 张大林. 微小菱形离散肋通道中R134a的冷凝换热实验研究[J]. 化工学报, 2022, 73(11): 4938-4947. |
[11] | 赵文静, 屠治荣, 孟祥铠, 江锦波, 彭旭东. 非规则V形表面织构化机械端面密封性能研究[J]. 化工学报, 2022, 73(10): 4585-4593. |
[12] | 李英杰, 李奇侠, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 波浪结构超疏水表面对液滴聚并弹跳的影响[J]. 化工学报, 2022, 73(10): 4345-4354. |
[13] | 苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256. |
[14] | 吴延鹏, 雷晓宇, 陆禹名, 陈卉妮. 太阳能利用透光表面超疏水增透膜研究进展[J]. 化工学报, 2021, 72(S1): 21-29. |
[15] | 姜洪鹏, 白敏丽, 高栋栋, 高林松, 吕继组. 超疏水/亲水性结构表面流动沸腾传热实验研究[J]. 化工学报, 2021, 72(8): 4093-4103. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 339
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||