化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2748-2756.doi: 10.11949/0438-1157.20220462

• 材料化学工程与纳米技术 • 上一篇    下一篇

无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究

徐珂(),史国强,薛冬峰()   

  1. 中国科学院深圳先进技术研究院先进材料科学与工程研究所多尺度晶体材料研究中心,广东 深圳 518055
  • 收稿日期:2022-03-31 修回日期:2022-05-08 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 薛冬峰 E-mail:ke.xu@siat.ac.cn;df.xue@siat.ac.cn
  • 作者简介:徐珂(1990—),女,博士,助理研究员,ke.xu@siat.ac.cn
  • 基金资助:
    国家自然科学基金重大研究计划项目(91434118);国家自然科学基金重点项目(51832007);中国博士后科学基金第70批面上项目(2021M703364/2021M703363);广东省基础与应用基础研究基金委员会区域联合基金-青年基金项目(2021A1515110936);深圳市优秀科技创新人才培养项目(博士基础研究启动)(RCBS20210609104609043)

Inorganic hybrid perovskite cluster materials: luminescence properties of mesoscale perovskite materials

Ke XU(),Guoqiang SHI,Dongfeng XUE()   

  1. Multiscale Crystal Materials Research Center, Institute of Advanced Materials Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
  • Received:2022-03-31 Revised:2022-05-08 Published:2022-06-05 Online:2022-06-30
  • Contact: Dongfeng XUE E-mail:ke.xu@siat.ac.cn;df.xue@siat.ac.cn

摘要:

近年来,介尺度钙钛矿材料体系中钙钛矿魔幻尺寸团簇(PMSCs)材料因具有优异的半导体特性而在新兴光电器件领域极具潜力。然而,介尺度PMSCs容易在合成过程中生成尺寸较大的介尺度钙钛矿量子点(PQDs),难以满足实际应用的需求。本研究采用配体辅助再沉淀(LAPR)方法,通过调节戊酸(VA)和油胺(OAm)配体比例制备了不同发光性质的无机杂化介尺度钙钛矿材料CsPbBr3 PMSCs、CsPbBr3 PMSCs/CsPbBr3 PQDs混合物和CsPbBr3 PQDs,研究并分析了PQDs和PMSCs的光学性质、形貌结构、稳定性和介尺度结构演变机理。研究发现,表面协同钝化配体VA和OAm的比例是反应能否生成介尺度纯相CsPbBr3 PMSCs的关键。而且,当VA和OAm配体的表面钝化效果越佳越易生成发光性质优异的纯相CsPbBr3 PMSCs。

关键词: 介尺度, 无机杂化钙钛矿, 团簇, 纳米结构, 合成, 稳定性, 发光性质

Abstract:

In the mesoscale perovskite material system, perovskite magic sized clusters (PMSCs) have great development prospects and application potential in the field of emerging optoelectronic devices due to their excellent semiconductor properties, such as narrow emission spectral band, high color purity, precise wavelength tunability, uniform particle size distribution, simple solution processing and synthesis process. However, the mesoscale PMSCs are easy to generate perovskite quantum dots (PQDs) with large size during the synthesis process, which is difficult to meet the needs of practical applications. To solve this problem, a simple and controllable ligand-assisted reprecipitation (LAPR) method was used to synthesize inorganic hybrid mesoscale perovskite materials of CsPbBr3 PMSCs, CsPbBr3 PMSCs/CsPbBr3 PQDs mixtures and CsPbBr3 PQDs with different luminescence properties by adjusting the ratio of valeric acid (VA) to oleylamine (OAm) surface ligands. The optical properties, morphological structure, stability and mesoscale structure evolution mechanism of the PQDs and PMSCs were studied and analyzed in detail. It is found that the ratio of surface synergistic passivation ligands VA to OAm is the key to whether the reaction can generate pure-phase CsPbBr3 PMSCs. Moreover, when the surface passivation effect of VA and OAm ligands is optimal, it is easier to generate mesoscale pure-phase CsPbBr3 PMSCs with excellent luminescence properties.

Key words: mesoscale, inorganic hybrid perovskite, cluster, nanostructure, synthesis, stability, luminescence properties

中图分类号: 

  • O 649.4

图1

PbBr2 MSCs、CsPbBr3 PMSCs、CsPbBr3 PMSCs/CsPbBr3 PQDs混合物和CsPbBr3 PQDs样品的紫外吸收光谱和荧光发射光谱"

表1

PbBr2 MSCs、CsPbBr3 PMSCs、CsPbBr3 PMSCs/CsPbBr3 PQDs混合物和CsPbBr3 PQDs样品的PLQYs、发射峰值和发射峰半峰宽(FHWM)值"

SamplePLQY/%Emission pesk/nmFWHM/nm
PbBr2 MSCs439710.20
CsPbBr3 PMSCs8240511.13
CsPbBr3 PMSCs/CsPbBr3 PQDs76421/50311.13/22.41
CsPbBr3 PQDs5752418.45

图2

CsPbBr3 PMSCs、CsPbBr3 PMSCs/CsPbBr3 PQDs和CsPbBr3 PQDs的TEM图和粒径分布直方图"

图3

CsPbBr3 PMSCs、CsPbBr3 PMSCs/CsPbBr3 PQDs和CsPbBr3 PQDs样品的稳定性(a) 在空气和黑暗环境下:相对荧光强度与测试时间的函数曲线;(b) 在黑暗环境下异丙醇溶剂测试:相对荧光强度随时间连续衰减曲线"

图4

PbBr2 MSCs、CsPbBr3 PMSCs、CsPbBr3 PMSCs/CsPbBr3 PQDs和CsPbBr3 PQDs结构演变示意图(紫色、灰色和绿色小球分别代表Cs原子、Pb原子和Br原子)"

1 Dey A, Ye J Z, De A, et al. State of the art and prospects for halide perovskite nanocrystals[J]. ACS Nano, 2021, 15(7): 10775-10981.
2 Zhang J Z. A “cocktail” approach to effective surface passivation of multiple surface defects of metal halide perovskites using a combination of ligands[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 5055-5063.
3 Wang H P, Li S Y, Liu X Y, et al. Low-dimensional metal halide perovskite photodetectors[J]. Advanced Materials, 2021, 33(7): 2003309.
4 Huang Z Q, Long J, Dai R Y, et al. Ultra-flexible and waterproof perovskite photovoltaics for washable power source applications[J]. Chemical Communications, 2021, 57(51): 6320-6323.
5 Zhu L, Cao H, Xue C, et al. Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes[J]. Nature Communications, 2021, 12 (1): 5081.
6 蒋勤, 张守臣, 王立秋, 等. 钙钛矿型光催化剂的制备及应用研究进展[J]. 化工进展, 2006(2): 136-139.
Jiang Q, Zhang S C, Wang L Q, et al. Preparation of perovskite photocatalysts and its applications progress[J]. Chemical Industry and Engineering Progress, 2006(2): 136-139.
7 Zou C, Chang C, Sun D, et al. Photolithographic patterning of perovskite thin films for multicolor display applications[J]. Nano Letters, 2020, 20(5): 3710-3717.
8 Liu L, Pan K L, Xu K, et al. Impact of molecular ligands in the synthesis and transformation between metal halide perovskite quantum dots and magic sized clusters[J]. ACS Physical Chemistry Au, 2022, 2(3):156-170.
9 Zhang F, Ma Z Z, Shi Z F, et al. Recent advances and opportunities of lead-free perovskite nanocrystal for optoelectronic application[J]. Energy Material Advances, 2021, 2021: 1-38.
10 陈超, 赵伶玲, 王镜凡. 甲胺铅碘钙钛矿物性及制备过程的分子模拟[J]. 化工学报, 2018, 69(6): 2380-2387.
Chen C, Zhao L L, Wang J F. Molecular simulation of physical properties and preparation of CH3NH3PbI3 [J]. CIESC Journal, 2018, 69(6): 2380-2387.
11 Su R, Fieramosca A, Zhang Q, et al. Perovskite semiconductors for room-temperature exciton-polaritonics[J]. Nature Materials, 2021, 20(10): 1315-1324.
12 Vickers E T, Chen Z Y, Cherrette V, et al. Interplay between perovskite magic-sized clusters and amino lead halide molecular clusters[J]. Research, 2021, 2021: 6047971.
13 Liu Y, Zheng X, Fang Y, et al. Ligand assisted growth of perovskite single crystals with low defect density[J]. Nature Communications, 2021, 12(1): 1686.
14 Peng L C, Geng J, Ai L S, et al. Room temperature synthesis of ultra-small, near-unity single-sized lead halide perovskite quantum dots with wide color emission tunability, high color purity and high brightness[J]. Nanotechnology, 2016, 27(33): 335604.
15 Xu Y B, Zhang Q, Lv L F, et al. Synthesis of ultrasmall CsPbBr3 nanoclusters and their transformation to highly deep-blue-emitting nanoribbons at room temperature[J]. Nanoscale, 2017, 9(44): 17248-17253.
16 Peng L C, Dutta A, Xie R G, et al. Dot-wire-platelet-cube: step growth and structural transformations in CsPbBr3 perovskite nanocrystals[J]. ACS Energy Letters, 2018, 3(8): 2014-2020.
17 Vickers E T, Xu K, Dreskin B W, et al. Ligand dependent growth and optical properties of hybrid organo-metal halide perovskite magic sized clusters[J]. The Journal of Physical Chemistry C, 2019, 123(30): 18746-18752.
18 Feng S N, Qin Q L, Han X P, et al. Universal existence of localized single-photon emitters in the perovskite film of all-inorganic CsPbBr3 microcrystals[J]. Advanced Materials, 2022, 34(1): 2106278.
19 Tang Y Q, Tang S Z, Luo M, et al. All-inorganic lead-free metal halide perovskite quantum dots: progress and prospects[J]. Chemical Communications, 2021, 57(61): 7465-7479.
20 Zhang Y W, Wu G, Dang H, et al. Multicolored mixed-organic-cation perovskite quantum dots (FA x MA1- x PbX3, X = Br and I) for white light-emitting diodes[J].Industrial & Engineering Chemistry Research, 2017, 56(36): 10053-10059.
21 Xu K, Vickers E T, Rao L S, et al. Synergistic surface passivation of CH3NH3PbBr3 perovskite quantum dots with phosphonic acid and (3-aminopropyl)triethoxysilane[J]. Chemistry - A European Journal, 2019, 25(19): 5014-5021.
22 Luo B B, Li F, Xu K, et al. B-site doped lead halide perovskites: synthesis, band engineering, photophysics, and light emission applications[J]. Journal of Materials Chemistry C, 2019, 7(10): 2781-2808.
23 Liu L, Xu K, Allen A L, et al. Enhancing the photoluminescence and stability of methylammonium lead halide perovskite nanocrystals with phenylalanine[J]. The Journal of Physical Chemistry C, 2021, 125(4): 2793-2801.
24 Xu K, Allen A C, Luo B B, et al. Tuning from quantum dots to magic sized clusters of CsPbBr3 using novel planar ligands based on the trivalent nitrate coordination complex[J]. The Journal of Physical Chemistry Letters, 2019, 10(15): 4409-4416.
25 Hoffman J B, Zaiats G, Wappes I, et al. CsPbBr3 solar cells: controlled film growth through layer-by-layer quantum dot deposition[J]. Chemistry of Materials, 2017, 29(22): 9767-9774.
26 袁耀欣, 张瑞, 张建峰, 等. 全无机钙钛矿量子点的制备及发光性能[J]. 西安工程大学学报, 2021, 35(2): 91-96.
Yuan Y X, Zhang R, Zhang J F, et al. Synthesis and luminescence properties of all-inorganic CsPbX3 perovskite quantum dots[J]. Journal of Xi'an Polytechnic University, 2021, 35(2): 91-96.
27 Xu K, Vickers E T, Luo B B, et al. Room temperature synthesis of cesium lead bromide perovskite magic sized clusters with controlled ratio of carboxylic acid and benzylamine capping ligands[J]. Solar Energy Materials and Solar Cells, 2020, 208: 110341.
28 Liu L, Pan K L, Xu K, et al. Synthesis and optical properties of Mn2+-doped amino lead halide molecular clusters assisted by chloride ion[J]. The Journal of Physical Chemistry Letters, 2021, 12(31): 7497-7503.
29 Xu K, Vickers E T, Luo B B, et al. First synthesis of Mn-doped cesium lead bromide perovskite magic sized clusters at room temperature[J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 1162-1169.
30 He J J, Chu Y F, Sun Y C, et al. Beyond the limit of Goldschmidt tolerance factor: crystal surface engineering to boost the α-phase stability of formamidinium-only hybrid inorganic-organic perovskites[J]. Solar RRL, 2021, 5(8): 2100188.
31 Yin W J, Yang J H, Kang J, et al. Halide perovskite materials for solar cells: a theoretical review[J]. Journal of Materials Chemistry A, 2015, 3(17): 8926-8942.
32 Huang H, Bodnarchuk M I, Kershaw S V, et al. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance[J]. ACS Energy Letters, 2017, 2(9): 2071-2083.
33 Qian J Y, Xu B, Tian W J. A comprehensive theoretical study of halide perovskites ABX3 [J]. Organic Electronics, 2016, 37: 61-73.
34 Wang Y, Yu D J, Wang Z, et al. Solution-grown CsPbBr3/Cs4PbBr6 perovskite nanocomposites: toward temperature-insensitive optical gain[J]. Small, 2017, 13(34): 1701587.
[1] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[2] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[3] 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
[4] 李雯, 兰忠, 强伟丽, 任文芝, 杜宾港, 马学虎. 蒸汽冷凝近壁过渡区团簇演化特性[J]. 化工学报, 2022, 73(7): 2865-2873.
[5] 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485.
[6] 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414.
[7] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[8] 李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661.
[9] 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741.
[10] 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467.
[11] 牛犁, 刘梦溪, 王海北. 密相流化床中介尺度流动结构的流体力学特性研究[J]. 化工学报, 2022, 73(6): 2622-2635.
[12] 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621.
[13] 王利民, 郭舒宇, 向星, 付少童. 湍流系统的能量最小多尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2415-2426.
[14] 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495.
[15] 胡善伟, 刘新华. 气固流化系统多尺度跨流域EMMS建模[J]. 化工学报, 2022, 73(6): 2514-2528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!