化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 87-95.DOI: 10.11949/0438-1157.20221610
收稿日期:
2022-11-13
修回日期:
2022-12-25
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
吴静怡
作者简介:
肖明堃(1997—),男,博士研究生,xiaomk@sjtu.edu.cn
基金资助:
Mingkun XIAO(), Guang YANG, Yonghua HUANG, Jingyi WU()
Received:
2022-11-13
Revised:
2022-12-25
Online:
2023-06-05
Published:
2023-09-27
Contact:
Jingyi WU
摘要:
液氧是深空探测常用大比冲低温推进剂的重要组成部分,针对液氧气泡动力学的研究非常必要。基于开源CFD软件OpenFOAM,采用CLSVoF法对不同重力水平下从浸没孔生长的液氧气泡进行数值研究。结果表明,重力水平越低,相同无量纲时刻的气泡体积越大,气泡越接近球形。气泡重心在轴向的变化会经历“快-慢-快”三个阶段,但是在高重力水平下第一个阶段不明显。壁面接触角在低重力水平下的变化比高重力水平下更加明显。气泡脱离参数与重力水平呈现明显的次幂定律变化规律。
中图分类号:
肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95.
Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice[J]. CIESC Journal, 2023, 74(S1): 87-95.
流体 | 饱和温度/K | ρ/(kg/m3) | μ/(μPa·s) | σ/(mN/m) |
---|---|---|---|---|
LOX | 90.062 90.062 | 1141.8 | 196.51 | 13.205 13.205 |
GOX | 4.4135 | 7.0032 |
表1 低温流体在0.1 MPa时的物性[20]
Table 1 Physical properties of cryogenic fluids at 0.1 MPa[20]
流体 | 饱和温度/K | ρ/(kg/m3) | μ/(μPa·s) | σ/(mN/m) |
---|---|---|---|---|
LOX | 90.062 90.062 | 1141.8 | 196.51 | 13.205 13.205 |
GOX | 4.4135 | 7.0032 |
星球 | 重力水平g/(m/s2) |
---|---|
木星 | 24.8 |
地球 | 9.81 |
火星 | 3.71 |
月球 | 1.64 |
冥王星 | 0.58 |
表2 不同星球重力水平[18-19]
Table 2 Values of gravitational acceleration at different planets[18-19]
星球 | 重力水平g/(m/s2) |
---|---|
木星 | 24.8 |
地球 | 9.81 |
火星 | 3.71 |
月球 | 1.64 |
冥王星 | 0.58 |
气泡脱离参数 | 次幂定律参数n | 拟合曲线R2值 |
---|---|---|
tdet | -0.944 | 0.991 |
Vdet | -0.889 | 0.998 |
zCG,det | -0.278 | 0.945 |
表3 不同气泡脱离参数次幂定律常数与R2值
Table 3 Values of constant and R2 in power law for different bubble detachment parameters
气泡脱离参数 | 次幂定律参数n | 拟合曲线R2值 |
---|---|---|
tdet | -0.944 | 0.991 |
Vdet | -0.889 | 0.998 |
zCG,det | -0.278 | 0.945 |
1 | Ma Y, Gao Y, Sun Q, et al. Analysis and experimental investigation on the subcooling of liquid oxygen propellant[J]. Cryogenics, 2022, 124: 103468. |
2 | 刘鹏, 吴克, 杜王芳, 等. 微重力池沸腾中的气泡行为实验研究[J]. 空间科学学报, 2018, 38(2): 221-226. |
Liu P, Wu K, Du W F, et al. Experimental study on bubble behaviors in microgravity pool boiling[J]. Journal of Space Science, 2018, 38(2): 221-226. | |
3 | Colin C, Kannengieser O, Bergez W, et al. Nucleate pool boiling in microgravity: recent progress and future prospects[J]. Comptes Rendus Mécanique, 2017, 345(1): 21-34. |
4 | Bari S D, Lakehal D, Robinson A J. A numerical study of quasi-static gas injected bubble growth: some aspects of gravity[J]. International Journal of Heat and Mass Transfer, 2013, 64: 468-482. |
5 | Chakraborty I, Ray B, Biswas G, et al. Computational investigation on bubble detachment from submerged orifice in quiescent liquid under normal and reduced gravity[J]. Physics of Fluids, 2009, 21(6): 062103. |
6 | Oguz H N, Prosperetti A. Dynamics of bubble growth and detachment from a needle[J]. Journal of Fluid Mechanics, 1993, 257: 111-145. |
7 | Jamialahmadi M, Zehtaban M R, Müller-Steinhagen H, et al. Study of bubble formation under constant flow conditions[J]. Chemical Engineering Research and Design, 2001, 79(5): 523-532. |
8 | Buwa V V, Gerlach D, Durst F, et al. Numerical simulations of bubble formation on submerged orifices: period-1 and period-2 bubbling regimes[J]. Chemical Engineering Science, 2007, 62(24): 7119-7132. |
9 | Albadawi A, Delauré Y, Donoghue D B, et al. Numerical investigation of volume of fluid and level set interface capturing methods for bubble growth and detachment[J]. Journal of Physics: Conference Series, 2012, 395: 012166. |
10 | Albadawi A, Donoghue D B, Robinson A J, et al. On the analysis of bubble growth and detachment at low Capillary and Bond numbers using volume of fluid and level set methods[J]. Chemical Engineering Science, 2013, 90: 77-91. |
11 | Albadawi A, Donoghue D B, Robinson A J, et al. Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment[J]. International Journal of Multiphase Flow, 2013, 53: 11-28. |
12 | 肖明堃, 黄永华, 吴静怡, 等. 非均匀磁场力作用下微重力液氧气液界面特性[J]. 制冷技术, 2020, 40(6): 1-11. |
Xiao M K, Huang Y H, Wu J Y, et al. Gas-liquid interface behavior of liquid oxygen in compensated microgravity field with inhomogeneous magnetic force[J]. Chinese Journal of Refrigeration Technology, 2020, 40(6): 1-11. | |
13 | Nahra H K, Kamotani Y. Prediction of bubble diameter at detachment from a wall orifice in liquid cross-flow under reduced and normal gravity conditions[J]. Chemical Engineering Science, 2003, 58(1): 55-69. |
14 | Herman C, Iacona E, Földes I B, et al. Experimental visualization of bubble formation from an orifice in microgravity in the presence of electric fields[J]. Experiments in Fluids, 2002, 32(3): 396-412. |
15 | Marco P D, Grassi W, Memoli G, et al. Influence of electric field on single gas-bubble growth and detachment in microgravity[J]. International Journal of Multiphase Flow, 2003, 29(4): 559-578. |
16 | Pamperin O, Rath H J. Influence of buoyancy on bubble formation at submerged orifices[J]. Chemical Engineering Science, 1995, 50(19): 3009-3024. |
17 | Chakraborty I, Ray B, Biswas G, et al. Computational investigation on bubble detachment from submerged orifice in quiescent liquid under normal and reduced gravity[J]. Physics of Fluids, 2009, 21(6): 062103. |
18 | Georgoulas A, Koukouvinis P, Gavaises M, et al. Numerical investigation of quasi-static bubble growth and detachment from submerged orifices in isothermal liquid pools: the effect of varying fluid properties and gravity levels[J]. International Journal of Multiphase Flow, 2015, 74: 59-78. |
19 | Burke P A, Dunbar B J. Development of computational fluid dynamic (CFD) models of the formation and buoyancy-driven detachment of bubbles in variable gravity environments[C]//AIAA Scitech 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. |
20 | Linstrom P. NIST chemistry webbook, nist standard reference database 69[DB/OL]. [2022-12-26]. . |
21 | Weller H G, Tabor G, Jasak H, et al. A tensorial approach to computational continuum mechanics using object-oriented techniques[J]. Computers in Physics, 1998, 12(6): 620-631. |
22 | Yamamoto T, Okano Y, Dost S. Validation of the S-CLSVOF method with the density-scaled balanced continuum surface force model in multiphase systems coupled with thermocapillary flows[J]. International Journal for Numerical Methods in Fluids, 2017, 83(3): 223-244. |
23 | Chu X, Liu Y, Wang W, et al. Turbulence, pseudo-turbulence, and local flow topology in dispersed bubbly flow[J]. Physics of Fluids, 2020, 32(8): 083310. |
24 | Yang G, Terzis A, Zarikos I, et al. Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations[J]. Chemical Engineering Journal, 2019, 370: 444-454. |
25 | Sussman M. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles[J]. Journal of Computational Physics, 2003, 187(1): 110-136. |
26 | Xiao M, Yang G, Huang Y, et al. Evaluation of different interface-capturing methods for cryogenic two-phase flows under microgravity[J]. Physics of Fluids, 2022, 34(11): 112124. |
27 | Gerlach D, Biswas G, Durst F, et al. Quasi-static bubble formation on submerged orifices[J]. International Journal of Heat and Mass Transfer, 2005, 48(2): 425-438. |
28 | Simmons J A, Sprittles J E, Shikhmurzaev Y D. The formation of a bubble from a submerged orifice[J]. European Journal of Mechanics - B/Fluids, 2015, 53: 24-36. |
29 | Hartwig J, Mann J A. Bubble point pressures of binary methanol/water mixtures in fine-mesh screens[J]. AIChE Journal, 2014, 60(2): 730-739. |
30 | Gerlach D, Alleborn N, Buwa V, et al. Numerical simulation of periodic bubble formation at a submerged orifice with constant gas flow rate[J]. Chemical Engineering Science, 2007, 62(7): 2109-2125. |
[1] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
[2] | 唐昊, 胡定华, 李强, 张轩畅, 韩俊杰. 抗加速度双切线弧流道内气泡动力学行为数值与可视化研究[J]. 化工学报, 2024, 75(9): 3074-3082. |
[3] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[4] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[5] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[6] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[7] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[8] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[9] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[10] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[11] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
[12] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[13] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[14] | 余清杰, 杨洪海, 刘玉浩, 方海洲, 何伟琪, 王军, 卢心诚. 脉动热管温度信号的小波分析及流型识别[J]. 化工学报, 2024, 75(7): 2497-2504. |
[15] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 354
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||