1 |
Zabriskie T M, Klocke J A, Ireland C M, et al. Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity[J]. Journal of the American Chemical Society, 1986, 108(11): 3123-3124.
|
2 |
Zarezin D P, Shmatova O I, Kabylda A M, et al. Efficient synthesis of the peptide fragment of the natural depsipeptides jaspamide and chondramide[J]. European Journal of Organic Chemistry, 2018, 2018(34): 4716-4722.
|
3 |
Zhdanko A, Schmauder A, Ma C I, et al. Synthesis of chondramide A analogues with modified β-tyrosine and their biological evaluation[J]. Chemistry-A European Journal, 2011, 17(47): 13349-13357.
|
4 |
Andavan G S, Lemmens-Gruber R. Cyclodepsipeptides from marine sponges: natural agents for drug research[J]. Marine Drugs, 2010, 8(3): 810-834.
|
5 |
Alvariño R, Alonso E, Tabudravu J N, et al. Tavarua deoxyriboside A and jasplakinolide as potential neuroprotective agents: effects on cellular models of oxidative stress and neuroinflammation[J]. ACS Chemical Neuroscience, 2021, 12(1): 150-162.
|
6 |
Czajgucki Z, Andruszkiewicz R, Kamysz W. Structure activity relationship studies on the antimicrobial activity of novel edeine A and D analogues[J]. Journal of Peptide Science, 2006, 12(10): 653-662.
|
7 |
Gala F, D'Auria M V, De Marino S, et al. New jaspamide derivatives with antimicrofilament activity from the sponge Jaspis splendans[J]. Tetrahedron, 2007, 63(24): 5212-5219.
|
8 |
Liu M, Sibi M P. Recent advances in the stereoselective synthesis of β-amino acids[J]. Tetrahedron, 2002, 58(40): 7991-8035.
|
9 |
Plucińska K, Liberek B. Synthesis of diazoketones derived from α-amino acids; problem of side reactions[J]. Tetrahedron, 1987, 43(15): 3509-3517.
|
10 |
Soloshonok V A, Fokina N A, Rybakova A V, et al. Biocatalytic approach to enantiomerically pure β-amino acids[J]. Tetrahedron: Asymmetry, 1995, 6(7): 1601-1610.
|
11 |
Broadley K, Davies S G. Stereoselective preparation of β-amino-acyl iron complexes for β-lactam synthesis[J]. Tetrahedron Letters, 1984, 25(16): 1743-1744.
|
12 |
Furukawa M, Okawara T, Terawaki Y. Asymmetric syntheses of β-amino acids by the addition of chiral amines to C̿ C double bonds[J]. Chemical and Pharmaceutical Bulletin, 1977, 25(6): 1319-1325.
|
13 |
Sibi M P, Prabagaran N, Ghorpade S G, et al. Enantioselective synthesis of α,β-disubstituted-β-amino acids[J]. Journal of the American Chemical Society, 2003, 125(39): 11796-11797.
|
14 |
Furukawa M, Okawara T, Noguchi Y, et al. Asymmetric syntheses of β-amino acids by the reduction of enamines[J]. Chemical and Pharmaceutical Bulletin, 1979, 27(9): 2223-2226.
|
15 |
Lubell W D, Kitamura M, Noyori R. Enantioselective synthesis of β-amino acids based on BINAP-ruthenium(Ⅱ) catalyzed hydrogenation[J]. Tetrahedron: Asymmetry, 1991, 2(7): 543-554.
|
16 |
Lurain A E, Walsh P J. A catalytic asymmetric method for the synthesis of γ-unsaturated β-amino acid derivatives[J]. Journal of the American Chemical Society, 2003, 125(35): 10677-10683.
|
17 |
Davies S G, Garrido N M, Kruchinin D, et al. Homochiral lithium amides for the asymmetric synthesis of β-amino acids[J]. Tetrahedron: Asymmetry, 2006, 17(12): 1793-1811.
|
18 |
Yamagiwa N, Qin H B, Matsunaga S, et al. Lewis acid-Lewis acid heterobimetallic cooperative catalysis: mechanistic studies and application in enantioselective aza-Michael reaction[J]. Journal of the American Chemical Society, 2005, 127(38): 13419-13427.
|
19 |
Sperl J M, Sieber V. Multienzyme cascade reactions-status and recent advances[J]. ACS Catalysis, 2018, 8(3): 2385-2396.
|
20 |
Hepworth L J, France S P, Hussain S, et al. Enzyme cascades in whole cells for the synthesis of chiral cyclic amines[J]. ACS Catalysis, 2017, 7(4): 2920-2925.
|
21 |
Schrittwieser J H, Velikogne S, Hall M, et al. Artificial biocatalytic linear cascades for preparation of organic molecules[J]. Chemical Reviews, 2018, 118(1): 270-348.
|
22 |
Luo Z W, Lee S Y. Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli[J]. Nature Communications, 2017, 8: 15689.
|
23 |
Sim M, Han M. Hydrolysis of dimethyl terephthalate for the production of terephthalic acid[J]. Journal of Chemical Engineering of Japan, 2006, 39(3): 327-333.
|
24 |
Song W, Wang J H, Wu J, et al. Asymmetric assembly of high-value α-functionalized organic acids using a biocatalytic chiral-group-resetting process[J]. Nature Communications, 2018, 9: 3818.
|
25 |
France S P, Hussain S, Hill A M, et al. One-pot cascade synthesis of mono- and disubstituted piperidines and pyrrolidines using carboxylic acid reductase (CAR), ω-transaminase (ω-TA), and imine reductase (IRED) biocatalysts[J]. ACS Catalysis, 2016, 6(6): 3753-3759.
|
26 |
Klumbys E, Zebec Z, Weise N J, et al. Bio-derived production of cinnamyl alcohol via a three step biocatalytic cascade and metabolic engineering[J]. Green Chemistry, 2019, 20(3): 658-663.
|
27 |
Yu H L, Li T, Chen F F, et al. Bioamination of alkane with ammonium by an artificially designed multienzyme cascade[J]. Metabolic Engineering, 2018, 47: 184-189.
|
28 |
Schmidt N G, Eger E, Kroutil W. Building bridges: biocatalytic C—C-bond formation toward multifunctional products[J]. ACS Catalysis, 2016, 6(7): 4286-4311.
|
29 |
Wu S K, Zhou Y, Seet D, et al. Regio-and stereoselective oxidation of styrene derivatives to arylalkanoic acids via one-pot cascade biotransformations[J]. Advanced Synthesis & Catalysis, 2017, 359(12): 2132-2141.
|
30 |
Zhou Y, Wu S K, Li Z. One-pot enantioselective synthesis of D-phenylglycines from racemic mandelic acids, styrenes, or biobased L-phenylalanine via cascade biocatalysis[J]. Advanced Synthesis & Catalysis, 2017, 359(24): 4305-4316.
|
31 |
Li G S, Lian J Z, Xue H L, et al. Biocascade synthesis of L-tyrosine derivatives by coupling a thermophilic tyrosine phenol-lyase and L-lactate oxidase[J]. European Journal of Organic Chemistry, 2020, 2020(8): 1050-1054.
|
32 |
Busto E, Simon R C, Richter N, et al. One-pot, two-module three-step cascade to transform phenol derivatives to enantiomerically pure (R)- or (S)-p-hydroxyphenyl lactic acids[J]. ACS Catalysis, 2016, 6(4): 2393-2397.
|
33 |
Tork S D, Nagy E Z A, Cserepes L, et al. The production of L- and D-phenylalanines using engineered phenylalanine ammonia lyases from Petroselinum crispum[J]. Scientific Reports, 2019, 9: 20123.
|
34 |
Dennig A, Busto E, Kroutil W, et al. Biocatalytic one-pot synthesis of L-tyrosine derivatives from monosubstituted benzenes, pyruvate, and ammonia[J]. ACS Catalysis, 2015, 5(12): 7503-7506.
|
35 |
Parmeggiani F, Lovelock S L, Weise N J, et al. Synthesis of D- and L-phenylalanine derivatives by phenylalanine ammonia lyases: a multienzymatic cascade process[J]. Angewandte Chemie International Edition, 2015, 54(15): 4608-4611.
|
36 |
Seisser B, Zinkl R, Gruber K, et al. Cutting long syntheses short: access to non-natural tyrosine derivatives employing an engineered tyrosine phenol lyase[J]. Advanced Synthesis & Catalysis, 2010, 352(4): 731-736.
|
37 |
Koulikova V V, Zakomirdina L N, Gogoleva O I, et al. Stereospecificity of isotopic exchange of C-α-protons of glycine catalyzed by three PLP-dependent lyases: the unusual case of tyrosine phenol-lyase[J]. Amino Acids, 2011, 41(5): 1247-1256.
|
38 |
Suzuki S, Hirahara T, Shim J K, et al. Purification and properties of thermostable β-tyrosinase from an obligately symbiotic thermophile, Symbiobacterium thermophilum[J]. Bioscience, Biotechnology, and Biochemistry, 1992, 56(1): 84-89.
|
39 |
Faleev N G, Spirina S N, Ivoilov V S, et al. The catalytic mechanism of tyrosine phenol-lyase from Erwinia herbicola: the effect of substrate structure on pH-dependence of kinetic parameters in the reactions with ring-substituted tyrosines[J]. Zeitschrift Für Naturforschung C, 1996, 51(5/6): 363-370.
|
40 |
Carman G M, Levin R E. Partial purification and some properties of tyrosine phenol-lyase from Aeromonas phenologenes ATCC 29063[J]. Applied and Environmental Microbiology, 1977, 33(1): 192-198.
|
41 |
Yamada H, Kumagai H, Kashima N, et al. Synthesis of L-tyrosine from pyruvate, ammonia and phenol by crystalline tyrosine phenol lyase[J]. Biochemical and Biophysical Research Communications, 1972, 46(2): 370-374.
|
42 |
Wierckx N J, Ballerstedt H, de Bont J A, et al. Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production[J]. J. Bacteriol., 2008, 190(8): 2822-2830.
|
43 |
Christenson S D, Liu W, Toney M D, et al. A novel 4-methylideneimidazole-5-one-containing tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis[J]. Journal of the American Chemical Society, 2003, 125(20): 6062-6063.
|
44 |
Rachid S, Krug D, Weissman K J, et al. Biosynthesis of (R)-β-tyrosine and its incorporation into the highly cytotoxic chondramides produced by Chondromyces crocatus[J]. Journal of Biological Chemistry, 2007, 282(30): 21810-21817.
|
45 |
Krug D, Müller R. Discovery of additional members of the tyrosine aminomutase enzyme family and the mutational analysis of CmdF[J]. ChemBioChem, 2009, 10(4): 741-750.
|
46 |
Walter T, King Z, Walker K D. A tyrosine aminomutase from rice (Oryza sativa) isomerizes (S)-α- to (R)-β-tyrosine with unique high enantioselectivity and retention of configuration[J]. Biochemistry, 2016, 55(1): 1-4.
|
47 |
Wu B, Szymański W, Wijma H J, et al. Engineering of an enantioselective tyrosine aminomutase by mutation of a single active site residue in phenylalanine aminomutase[J]. Chemical Communications, 2010, 46(43): 8157.
|