化工学报 ›› 2018, Vol. 69 ›› Issue (1): 272-281.DOI: 10.11949/j.issn.0438-1157.20170847
武耀康, 刘延峰, 李江华, 堵国成, 刘龙, 陈坚
收稿日期:
2017-07-02
修回日期:
2017-10-01
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
陈坚
基金资助:
国家优秀青年科学基金项目(31622001);国家自然科学基金项目(31671845,21676119)。
WU Yaokang, LIU Yanfeng, LI Jianghua, DU Guocheng, LIU Long, CHEN Jian
Received:
2017-07-02
Revised:
2017-10-01
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20170847
Supported by:
supported by the National Outstanding Youth Foundation of China(31622001) and the National Natural Science Foundation of China(31671845, 21676119).
摘要:
代谢工程是通过对代谢途径的设计、构建与优化,进行营养品、药品、生物燃料以及化工产品等各种生物基产品合成的关键技术。传统的改造策略如基因的敲除、弱化与过表达会造成代谢流的失衡,而利用微生物自身的调控方式和调控元件,构建合成调控元件,对代谢途径进行动态调控,可以平衡细胞生长与产物合成,从而实现高产量、高底物转化率与高生产强度的统一。利用微生物在转录水平对于外界环境以及胞内代谢物浓度的变化的响应机制,以及在转录后水平通过顺式及反式作用元件的调控,和在蛋白质水平通过途径酶的别构调节以及对蛋白质降解速率的调节,都能开发出相应的动态调控元件并对微生物的代谢进行动态调控。本文分别从转录水平、转录后水平及蛋白质水平3个层次总结了目前常见的一些动态调控元件,并对其在微生物代谢工程中的应用进行了介绍。
中图分类号:
武耀康, 刘延峰, 李江华, 堵国成, 刘龙, 陈坚. 动态调控元件及其在微生物代谢工程中的应用[J]. 化工学报, 2018, 69(1): 272-281.
WU Yaokang, LIU Yanfeng, LI Jianghua, DU Guocheng, LIU Long, CHEN Jian. Dynamic regulation elements and their applications in microbial metabolic engineering[J]. CIESC Journal, 2018, 69(1): 272-281.
[1] | BAILEY J E. Toward a science of metabolic engineering[J]. Science, 1991, 252(5013):1668-1675. |
[2] | STEPHANOPOULOS G, VALLINO J J. Network rigidity and metabolic engineering in metabolite overproduction[J]. Science, 1991, 252(5013):1675-1681. |
[3] | NIELSEN J, KEASLING J D. Engineering cellular metabolism[J]. Cell, 2016, 164(6):1185-1197. |
[4] | XIAO H, ZHONG J J. Production of useful terpenoids by higher-fungus cell factory and synthetic biology approaches[J]. Trends in Biotechnology, 2016, 34(3):242-255. |
[5] | LIU J, LI J, SHIN H D, et al. Protein and metabolic engineering for the production of organic acids[J]. Bioresource Technology, 2017, 239:412-421. |
[6] | JIANG Y, LIU J, JIANG W, et al. Current status and prospects of industrial bio-production of n-butanol in China[J]. Biotechnology Advances, 2015, 33(7):1493-1501. |
[7] | ROSENBERG J, ISCHEBECK T, COMMICHAU F M. Vitamin B6 metabolism in microbes and approaches for fermentative production[J]. Biotechnology Advances, 2017, 35(1):31-40. |
[8] | LIU L, LIU Y, SHIN H D, et al. Microbial production of glucosamine and N-acetylglucosamine:advances and perspectives[J]. Applied Microbiology and Biotechnology, 2013, 97(14):6149-6158. |
[9] | KEASLING J D. Synthetic biology and the development of tools for metabolic engineering[J]. Metabolic Engineering, 2012, 14(3):189-195. |
[10] | LIU Y, SHIN H D, LI J, et al. Toward metabolic engineering in the context of system biology and synthetic biology:advances and prospects[J]. Applied Microbiology and Biotechnology, 2015, 99(3):1109-1118. |
[11] | LEE S Y, KIM H U. Systems strategies for developing industrial microbial strains[J]. Nature Biotechnology, 2015, 33(10):1061-1072. |
[12] | BOOCK J T, GUPTA A, PRATHER K. Screening and modular design for metabolic pathway optimization[J]. Current Opinion in Biotechnology, 2015, 36:189-198. |
[13] | LIU Y, ZHU Y, LI J, et al. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production[J]. Metabolic Engineering, 2014, 23:42-52. |
[14] | SIU K H, CHEN R P, SUN Q, et al. Synthetic scaffolds for pathway enhancement[J]. Current Opinion in Biotechnology, 2015, 36:98-106. |
[15] | LIU Y, ZHU Y, MA W, et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis[J]. Metabolic Engineering, 2014, 24:61-69. |
[16] | CHUBUKOV V, GEROSA L, KOCHANOWSKI K, et al. Coordination of microbial metabolism[J]. Nature Reviews Microbiology, 2014, 12(5):327-340. |
[17] | HOLTZ W J, KEASLING J D. Engineering static and dynamic control of synthetic pathways[J]. Cell, 2010, 140(1):19-23. |
[18] | KOCHANOWSKI K, SAUER U, CHUBUKOV V. Somewhat in control-the role of transcription in regulating microbial metabolic fluxes[J]. Current Opinion in Biotechnology, 2013, 24(6):987-993. |
[19] | PARK J H, LEE K H, KIM T Y, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation[J]. Proc. Natl. Acad. Sci. USA, 2007, 104(19):7797-7802. |
[20] | WILLIAMS T C, ESPINOSA M I, NIELSEN L K, et al. Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2015, 14(1):1-10. |
[21] | SOMA Y, TSURUNO K, WADA M, et al. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch[J]. Metabolic Engineering, 2014, 23:175-184. |
[22] | FARMER W R, LIAO J C. Improving lycopene production in Escherichia coli by engineering metabolic control[J]. Nature Biotechnology, 2000, 18(5):533-537. |
[23] | ZHANG F, CAROTHERS J M, KEASLING J D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids[J]. Nature Biotechnology, 2012, 30(4):354-359. |
[24] | XU P, LI L, ZHANG F, et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control[J]. Proc. Natl. Acad. Sci. USA, 2014, 111(31):11299-11304. |
[25] | LIBIS V, DELEPINE B, FAULON J L. Sensing new chemicals with bacterial transcription factors[J]. Current Opinion in Microbiology, 2016, 33:105-112. |
[26] | DAHL R H, ZHANG F, ALONSO-GUTIERREZ J, et al. Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31(11):1039-1046. |
[27] | ISHⅡ T, YOSHIDA K I, TERAI G, et al. DBTBS:a database of Bacillus subtilis promoters and transcription factors[J]. Nucleic Acids Research, 2001, 29(1):278-280. |
[28] | ISHIHAMA A, SHIMADA T, YAMAZAKI Y. Transcription profile of Escherichia coli:genomic SELEX search for regulatory targets of transcription factors[J]. Nucleic Acids Research, 2016, 44(5):2058-2074. |
[29] | TEIXEIRA M C, MONTEIRO P, JAIN P, et al. The YEASTRACT database:a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2006, 34(suppl 1):D446-D451. |
[30] | WINKLER W, NAHVI A, BREAKER R R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression[J]. Nature, 2002, 419(6910):952. |
[31] | NUDLER E, MIRONOV A S. The riboswitch control of bacterial metabolism[J]. Trends in Biochemical Sciences, 2004, 29(1):11-17. |
[32] | SERGANOV A, NUDLER E. A decade of riboswitches[J]. Cell, 2013, 152(1/2):17-24. |
[33] | SUDARSAN N, WICKISER J K, NAKAMURA S, et al. An mRNA structure in bacteria that controls gene expression by binding lysine[J]. Genes & Development, 2003, 17(21):2688-2697. |
[34] | ZHOU L B, ZENG A P. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum[J]. ACS Synthtic Biology, 2015, 4(6):729-734. |
[35] | MANDAL M, LEE M, BARRICK J E, et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression[J]. Science, 2004, 306(5694):275-279. |
[36] | MILLER M B, BASSLER B L. Quorum sensing in bacteria[J]. Annual Review of Microbiology, 2001, 55(1):165-199. |
[37] | SOMA Y, HANAI T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production[J]. Metabolic Engineering, 2015, 30:7-15. |
[38] | GUPTA A, REIZMAN I M B, REISCH C R, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J]. Nature Biotechnology, 2017, 35(3):273-279. |
[39] | ZHOU L, NIU D D, TIAN K M, et al. Genetically switched D-lactate production in Escherichia coli[J]. Metabolic Engineering, 2012, 14(5):560-568. |
[40] | LI W, LI H X, JI S Y, et al. Characterization of two temperature-inducible promoters newly isolated from B. subtilis[J]. Biochemical and Biophysical Research Communications, 2007, 358(4):1148-1153. |
[41] | PANAHI R, VASHEGHANI-FARAHANI E, SHOJAOSADATI S A, et al. Induction of Bacillus subtilis expression system using environmental stresses and glucose starvation[J]. Annals of Microbiology, 2014, 64(2):879-882. |
[42] | OLIVA G, SAHR T, BUCHRIESER C. Small RNAs, 5' UTR elements and RNA-binding proteins in intracellular bacteria:impact on metabolism and virulence[J]. FEMS Microbiology Reviews, 2015, 39(3):331-349. |
[43] | WATERS L S, STORZ G. Regulatory RNAs in bacteria[J]. Cell, 2009, 136(4):615-628. |
[44] | CARTHEW R W, SONTHEIMER E J. Origins and mechanisms of miRNAs and siRNAs[J]. Cell, 2009, 136(4):642-655. |
[45] | MANDAL M, BREAKER R R. Gene regulation by riboswitches[J]. Nature Reviews:Molecular Cell Biology, 2004, 5(6):451-463. |
[46] | CARON M P, BASTET L, LUSSIER A, et al. Dual-acting riboswitch control of translation initiation and mRNA decay[J]. Proceedings of the National Academy of Sciences, 2012, 109(50):E3444-E3453. |
[47] | ZHOU L B, ZENG A P. Engineering a lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum[J]. ACS Synthtic Biology, 2015, 4(12):1335-1340. |
[48] | ROGERS J K, TAYLOR N D, CHURCH G M. Biosensor-based engineering of biosynthetic pathways[J]. Current Opinion in Biotechnology, 2016, 42:84-91. |
[49] | YANG J, SEO S W, JANG S, et al. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes[J]. Nature Communications, 2013, 4:1413. |
[50] | WINKLER W C, NAHVI A, ROTH A, et al. Control of gene expression by a natural metabolite-responsive ribozyme[J]. Nature, 2004, 428(6980):281-286. |
[51] | LEE S W, OH M K. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 28:143-150. |
[52] | YANG P, WANG J, PANG Q, et al. Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor[J]. Metabolic Engineering, 2017, 43:21-28. |
[53] | THOMASON M K, STORZ G. Bacterial antisense RNAs:how many are there, and what are they doing?[J]. Annual Review of Genetics, 2010, 44:167-188. |
[54] | BRANTL S. Regulatory mechanisms employed by cis-encoded antisense RNAs[J]. Current Opinion in Biotechnology, 2007, 10(2):102-109. |
[55] | SOLOMON K V, SANDERS T M, PRATHER K L. A dynamic metabolite valve for the control of central carbon metabolism[J]. Metabolic Engineering, 2012, 14(6):661-671. |
[56] | NAKASHIMA N, TAMURA T, GOOD L. Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli[J]. Nucleic Acids Research, 2006, 34(20):e138. |
[57] | YANG Y, LIN Y, LI L, et al. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products[J]. Metabolic Engineering, 2015, 29:217-226. |
[58] | STORZ G, VOGEL J, WASSARMAN K M. Regulation by small RNAs in bacteria:expanding frontiers[J]. Molecular Cell, 2011, 43(6):880-891. |
[59] | GOTTESMAN S. The small RNA regulators of Escherichia coli:roles and mechanisms[J]. Annual Review of Microbiology, 2004, 58:303-328. |
[60] | NA D, YOO S M, CHUNG H, et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs[J]. Nature Biotechnology, 2013, 31(2):170-174. |
[61] | QI L, LUCKS J B, LIU C C, et al. Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals[J]. Nucleic Acids Research, 2012, 40(12):5775-5786. |
[62] | TOMARI Y, ZAMORE P D. Perspective:machines for RNAi[J]. Genes & Development, 2005, 19(5):517-529. |
[63] | WILLIAMS T, AVERESCH N, WINTER G, et al. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 29:124-134. |
[64] | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. |
[65] | JINEK M, JIANG F, TAYLOR D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176):1247997. |
[66] | QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183. |
[67] | DIDOVYK A, BOREK B, TSIMRING L, et al. Transcriptional regulation with CRISPR-Cas9:principles, advances, and applications[J]. Current Opinion in Biotechnology, 2016, 40:177-184. |
[68] | JUSIAK B, CLETO S, PEREZ-PINERA P, et al. Engineering synthetic gene circuits in living cells with CRISPR technology[J]. Trends in Biotechnology, 2016, 34(7):535-547. |
[69] | LI S, JENDRESEN C B, GRUNBERGER A, et al. Enhanced protein and biochemical production using CRISPRi-based growth switches[J]. Metabolic Engineering, 2016, 38:274-284. |
[70] | ZALATAN J G, LEE M E, ALMEIDA R, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160(1/2):339-350. |
[71] | RICHTER F, FONFARA I, GELFERT R, et al. Switchable Cas9[J]. Current Opinion in Biotechnology, 2017, 48:119-126. |
[72] | RICHTER F, FONFARA I, BOUAZZA B, et al. Engineering of temperature-and light-switchable Cas9 variants[J]. Nucleic Acids Research, 2016, 44(20):10003-10014. |
[73] | MOTLAGH H N, WRABL J O, LI J, et al. The ensemble nature of allostery[J]. Nature, 2014, 508(7496):331-339. |
[74] | CHEN Z, RAPPERT S, ZENG A P. Rational design of allosteric regulation of homoserine dehydrogenase by a nonnatural inhibitor L-lysine[J]. ACS Synthtic Biology, 2015, 4(2):126-131. |
[75] | JANSSEN B D, HAYES C S. The tmRNA ribosome-rescue system[J]. Advances in Protein Chemistry & Structural Biology, 2012, 86:151-191. |
[76] | BROCKMAN I M, PRATHER K L. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites[J]. Metabolic Engineering, 2015, 28:104-113. |
[77] | TORELLA J P, FORD T J, KIM S N, et al. Tailored fatty acid synthesis via dynamic control of fatty acid elongation[J]. Proc. Natl. Acad. Sci. USA, 2013, 110(28):11290-11295. |
[78] | CAMERON D E, COLLINS J J. Tunable protein degradation in bacteria[J]. Nature Biotechnology, 2014, 32(12):1276-1281. |
[79] | GUIZIOU S, SAUVEPLANE V, CHANG H J, et al. A part toolbox to tune genetic expression in Bacillus subtilis[J]. Nucleic Acids Research, 2016, 44(15):7495-7508. |
[1] | 赵春雷, 郭亮, 高聪, 宋伟, 吴静, 刘佳, 刘立明, 陈修来. 代谢工程改造大肠杆菌生产软骨素[J]. 化工学报, 2023, 74(5): 2111-2122. |
[2] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[3] | 李彩风, 王晓, 李岗建, 林军章, 汪卫东, 束青林, 曹嫣镔, 肖盟. 嗜烃乳化菌SL-1与内源菌协同驱油的菌群作用关系研究[J]. 化工学报, 2022, 73(9): 4095-4102. |
[4] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[5] | 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. |
[6] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[7] | 侯晓松, 刘晨星, 任爱玲, 郭斌, 郭渊明. 超声雾化/表面活性剂强化吸收耦合生物洗涤净化甲苯废气[J]. 化工学报, 2022, 73(10): 4692-4706. |
[8] | 王欣慧, 王颖, 姚明东, 肖文海. 维生素A生物合成的研究进展[J]. 化工学报, 2022, 73(10): 4311-4323. |
[9] | 宋伟, 王金辉, 胡贵鹏, 陈修来, 刘立明, 吴静. 多酶级联催化合成(R)-β-酪氨酸[J]. 化工学报, 2022, 73(1): 352-361. |
[10] | 周武林, 高惠芳, 吴玉玲, 张显, 徐美娟, 杨套伟, 邵明龙, 饶志明. 重组酿酒酵母生物合成菜油甾醇[J]. 化工学报, 2021, 72(8): 4314-4324. |
[11] | 毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
[12] | 王欣, 赵鹏, 李清扬, 田平芳. 半导体合成生物学的研究进展[J]. 化工学报, 2021, 72(5): 2426-2435. |
[13] | 苏楠, 吴亦楠, 陈韵亿, 金丽华, 张翀, Aikawa Shimpei, Hasunuma Tomohisa, Kondo Akihiko, 邢新会. ARTP诱变钝顶螺旋藻突变体比较组学研究[J]. 化工学报, 2021, 72(12): 6298-6310. |
[14] | 郑煜堃, 孙青, 陈振, 于慧敏. 微生物细胞工厂生产化学品的研究进展——以几种典型小分子和大分子化学品为例[J]. 化工学报, 2021, 72(12): 6109-6121. |
[15] | 张震, 曾雪城, 秦磊, 李春. 微生物细胞工厂的智能设计进展[J]. 化工学报, 2021, 72(12): 6093-6108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||