化工学报 ›› 2022, Vol. 73 ›› Issue (2): 876-886.DOI: 10.11949/0438-1157.20211020
收稿日期:
2021-07-22
修回日期:
2021-10-25
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
白丁荣
作者简介:
白浩隆(1989—),男,硕士研究生,基金资助:
Haolong BAI1(),Liangliang FU1,2,Guangwen XU1,Dingrong BAI1()
Received:
2021-07-22
Revised:
2021-10-25
Online:
2022-02-05
Published:
2022-02-18
Contact:
Dingrong BAI
摘要:
利用微型流化床反应装置,结合快速过程质谱仪,在850~940℃操作温度下,研究了三种不同粒度分布烟煤和无烟煤在热解、气化和燃烧反应条件下四种主要气态氮产物HCN、NH3、NO和NO2的释放规律。结果表明,微型流化床可以实时检测挥发分氮和焦炭氮的动态释放序和类型,热解、气化和燃烧反应气氛的改变主要影响HCN和NH3的释放量。热解产物的气态氮主要是来自于挥发分,燃烧反应的HCN和NH3的释放量与温度有明显关系,而气化反应的各类气态氮释放量随温度变化波动不大。煤颗粒尺寸和温度变化对烟煤和无烟煤中各类气态氮释放量产生影响比较复杂,其中NH3的释放特性是区分挥发分N释放和半焦N释放的重要特征。
中图分类号:
白浩隆, 付亮亮, 许光文, 白丁荣. 流化床煤燃烧过程不同气氛下的气态氮释放特征[J]. 化工学报, 2022, 73(2): 876-886.
Haolong BAI, Liangliang FU, Guangwen XU, Dingrong BAI. Characteristics of gaseous nitrogen release in coal fluidized bed combustion under different atmospheres[J]. CIESC Journal, 2022, 73(2): 876-886.
Sample | Proximate analysis/%(mass,air dry basis) | Ultimate analysis/%( mass,ash-free dry basis) | ||||||
---|---|---|---|---|---|---|---|---|
M | V | A | FC | C | H | N | S | |
BC500~1000 | 4.23 | 26.32 | 3.60 | 65.85 | 75.79 | 4.418 | 1.005 | 0.61 |
BC230~500 | 4.38 | 26.03 | 4.97 | 64.63 | 73.84 | 4.706 | 1.004 | 0.63 |
BC20~230 | 4.71 | 26.78 | 6.47 | 62.05 | 74.06 | 4.599 | 0.919 | 0.59 |
AC500~1000 | 1.36 | 9.77 | 22.15 | 66.71 | 63.35 | 3.103 | 1.218 | 0.45 |
AC230~500 | 1.23 | 8.09 | 19.61 | 71.07 | 74.43 | 3.42 | 1.229 | 0.44 |
AC20~230 | 1.27 | 8.26 | 18.26 | 72.21 | 72.24 | 3.422 | 1.21 | 0.42 |
表1 不同样品煤的工业分析和元素分析
Table 1 Proximate and ultimate analysis of the coal samples
Sample | Proximate analysis/%(mass,air dry basis) | Ultimate analysis/%( mass,ash-free dry basis) | ||||||
---|---|---|---|---|---|---|---|---|
M | V | A | FC | C | H | N | S | |
BC500~1000 | 4.23 | 26.32 | 3.60 | 65.85 | 75.79 | 4.418 | 1.005 | 0.61 |
BC230~500 | 4.38 | 26.03 | 4.97 | 64.63 | 73.84 | 4.706 | 1.004 | 0.63 |
BC20~230 | 4.71 | 26.78 | 6.47 | 62.05 | 74.06 | 4.599 | 0.919 | 0.59 |
AC500~1000 | 1.36 | 9.77 | 22.15 | 66.71 | 63.35 | 3.103 | 1.218 | 0.45 |
AC230~500 | 1.23 | 8.09 | 19.61 | 71.07 | 74.43 | 3.42 | 1.229 | 0.44 |
AC20~230 | 1.27 | 8.26 | 18.26 | 72.21 | 72.24 | 3.422 | 1.21 | 0.42 |
1 | Yang W, Wang B, Lei S Y, et al. Combustion optimization and NOx reduction of a 600 MWe down-fired boiler by rearrangement of swirl burner and introduction of separated over-fire air[J]. Journal of Cleaner Production, 2019, 210: 1120-1130. |
2 | Wang Y Q, Zhou Y G, Bai N M, et al. Experimental investigation of the characteristics of NOx emissions with multiple deep air-staged combustion of lean coal[J]. Fuel, 2020, 280: 118416. |
3 | Song W, Wang Y L, Yang W, et al. Isotopic evaluation on relative contributions of major NOx sources to nitrate of PM2.5 in Beijing[J]. Environmental Pollution, 2019, 248: 183-190. |
4 | Ma S C, Chai J, Jiao K L, et al. Environmental influence and countermeasures for high humidity flue gas discharging from power plants[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 225-235. |
5 | Tang L, Qu J B, Mi Z F, et al. Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards[J]. Nature Energy, 2019, 4(11): 929-938. |
6 | Zhang Y, Zhu J G, Lyu Q G, et al. Experimental study on ultra-low NOx emissions from pulverized coal preheating combustion[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(1): e2560. |
7 | Wei Z B, Li X L, Xu L J, et al. Optimization of operating parameters for low NOx emission in high-temperature air combustion[J]. Energy & Fuels, 2012, 26(5): 2821-2829. |
8 | Yang W P. Summary of flue gas denitration technology for coal-fired power plants[J]. IOP Conference Series: Earth and Environmental Science, 2019, 300: 032054. |
9 | Zhang L M, Dong X G, Hou F J, et al. Study on optimization experiment of SCR denitrification technologies in a coal-fired power plant[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108: 052100. |
10 | Cai L G, Shang X, Gao S Q, et al. Low-NOx coal combustion via combining decoupling combustion and gas reburning[J]. Fuel, 2013, 112: 695-703. |
11 | He J D, Song W L, Gao S Q, et al. Experimental study of the reduction mechanisms of NO emission in decoupling combustion of coal[J]. Fuel Processing Technology, 2006, 87(9): 803-810. |
12 | Han Z N, Zeng X, Yao C B, et al. Comparison of direct combustion in a circulating fluidized bed system and decoupling combustion in a dual fluidized bed system for distilled spirit lees[J]. Energy & Fuels, 2016, 30(3): 1693-1700. |
13 | Li J J, Zhang M, Yang H R, et al. The theory and practice of NOx emission control for circulating fluidized bed boilers based on the re-specification of the fluidization state[J]. Fuel Processing Technology, 2016, 150: 88-93. |
14 | Zhang Y, Zhu J G, Lyu Q G, et al. The ultra-low NOx emission characteristics of pulverized coal combustion after high temperature preheating[J]. Fuel, 2020, 277: 118050. |
15 | Zhu S J, Lyu Q G, Zhu J G, et al. Experimental study on NOx emissions of pulverized bituminous coal combustion preheated by a circulating fluidized bed[J]. Journal of the Energy Institute, 2019, 92(2): 247-256. |
16 | Zhu S J, Lyu Q G, Zhu J G, et al. Effect of air distribution on NOx emissions of pulverized coal and char combustion preheated by a circulating fluidized bed[J]. Energy & Fuels, 2018, 32(7): 7909-7915. |
17 | Bajwa D S, Peterson T, Sharma N, et al. A review of densified solid biomass for energy production[J]. Renewable and Sustainable Energy Reviews, 2018, 96: 296-305. |
18 | Uddin M, Romlie M F, Abdullah M F, et al. A review on peak load shaving strategies[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3323-3332. |
19 | Gu Y J, Xu J, Chen D C, et al. Overall review of peak shaving for coal-fired power units in China[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 723-731. |
20 | De L, Mendiara T, Rufas A, et al. NO and N2O emissions in oxy-fuel combustion of coal in a bubbling fluidized bed combustor[J]. Fuel, 2015, 150: 146-153. |
21 | Speth K, Murer M, Spliethoff H. Experimental investigation of nitrogen species distribution in wood combustion and their influence on NOx reduction by combining air staging and ammonia injection[J]. Energy & Fuels, 2016, 30(7): 5816-5824. |
22 | Fan W D, Li Y, Guo Q H, et al. Coal-nitrogen release and NOx evolution in the oxidant-staged combustion of coal[J]. Energy, 2017, 125: 417-426. |
23 | Li Y Z, Zhai G W, Zhang H T, et al. Experimental and predictive research on solids holdup distribution in a CFB riser[J]. Powder Technology, 2019, 344: 830-841. |
24 | Xu J, Lu X F, Zhang W Q, et al. Effects of superficial gas velocity and static bed height on gas-solid flow characteristics in a 60-meter-high transparent CFB riser[J]. Chemical Engineering Journal, 2018, 334: 545-557. |
25 | Blaszczuk A, Nowak W. Bed-to-wall heat transfer coefficient in a supercritical CFB boiler at different bed particle sizes[J]. International Journal of Heat and Mass Transfer, 2014, 79: 736-749. |
26 | Li D F, Cai R X, Zhang M, et al. Operation characteristics of a bubbling fluidized bed heat exchanger with internal solid circulation for a 550-MWe ultra-supercritical CFB boiler[J]. Energy, 2020, 192: 116503. |
27 | Anca-Couce A, Sommersacher P, Evic N, et al. Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions[J]. Fuel, 2018, 222: 529-537. |
28 | Wang X, Ren Q Q, Li W, et al. Thermogravimetry-mass spectrometry analysis of nitrogen transformation during oxy-fuel combustion of coal and biomass mixtures[J]. Energy & Fuels, 2015, 29(4): 2462-2470. |
29 | Feng J, Li W Y, Xie K C, et al. Studies of the release rule of NOx precursors during gasification of coal and its char[J]. Fuel Processing Technology, 2003, 84(1/2/3): 243-254. |
30 | Tan L L, Li C Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass(Part Ⅰ): Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis[J]. Fuel, 2000, 79(15): 1883-1889. |
31 | Wang F, Zeng X, Geng S L, et al. Distinctive hydrodynamics of a micro fluidized bed and its application to gas-solid reaction analysis[J]. Energy & Fuels, 2018, 32(4): 4096-4106. |
32 | Paprika M J, Komatina M S, Dakić D V, et al. Prediction of coal primary fragmentation and char particle size distribution in fluidized bed[J]. Energy & Fuels, 2013, 27(9): 5488-5494. |
33 | Zhong S, Baitalow F, Meyer B. Experimental investigation on fragmentation initiation of mm-sized coal particles in a drop-tube furnace[J]. Fuel, 2018, 234: 473-481. |
34 | Han Z N, Yue J R, Zeng X, et al. Characteristics of gas-solid micro fluidized beds for thermochemical reaction analysis[J]. Carbon Resources Conversion, 2020, 3: 203-218. |
35 | Han Z N, Yue J R, Geng S L, et al. State-of-the-art hydrodynamics of gas-solid micro fluidized beds[J]. Chemical Engineering Science, 2021, 232: 116345. |
36 | Geng C C, Li S Y, Yue C T, et al. Pyrolysis characteristics of bituminous coal[J]. Journal of the Energy Institute, 2016, 89(4): 725-730. |
37 | Zhong M, Zhang Z K, Zhou Q, et al. Continuous high-temperature fluidized bed pyrolysis of coal in complex atmospheres: product distribution and pyrolysis gas[J]. Journal of Analytical and Applied Pyrolysis, 2012, 97: 123-129. |
38 | McKenzie L J, Tian F J, Guo X, et al. NH3 and HCN formation during the gasification of three rank-ordered coals in steam and oxygen[J]. Fuel, 2008, 87(7): 1102-1107. |
39 | Zhan H, Zhuang X Z, Song Y P, et al. Step pyrolysis of N-rich industrial biowastes: regulatory mechanism of NOx precursor formation via exploring decisive reaction pathways[J]. Chemical Engineering Journal, 2018, 344: 320-331. |
40 | Mathekga H I, Oboirien B O, North B C. A review of oxy-fuel combustion in fluidized bed reactors[J]. International Journal of Energy Research, 2016, 40(7): 878-902. |
[1] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[2] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[3] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[4] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[5] | 王瑞恒, 何品晶, 吕凡, 章骅. 垃圾焚烧飞灰水洗后三种固液分离方法参数比较及优化[J]. 化工学报, 2023, 74(4): 1712-1723. |
[6] | 鲁统鹏, 潘晓林, 吴鸿飞, 李煜, 于海燕. 有机絮凝剂对铁矿相沉降性能影响及其吸附机理[J]. 化工学报, 2022, 73(9): 4122-4132. |
[7] | 张东旺, 杨海瑞, 周托, 黄中, 李诗媛, 张缦. 生物质锅炉对流受热面积灰冷态模拟实验研究[J]. 化工学报, 2022, 73(8): 3731-3738. |
[8] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
[9] | 王刚, 夏志豪, 李希艳, 张虹, 韩振南, 宋兴飞, 许光文. 不同气氛下流化床菱镁矿轻烧产物特性研究[J]. 化工学报, 2022, 73(8): 3699-3707. |
[10] | 王凯玥, 马永丽, 李琛, 刘明言. 气液固微型流化床的气液传质系数[J]. 化工学报, 2022, 73(8): 3529-3540. |
[11] | 朱莲峰, 王超, 张梦娟, 刘方正, 贾鑫, 安萍, 许光文, 韩振南. 水蒸气/氧流化床两段煤气化制备低焦油合成气工艺实验[J]. 化工学报, 2022, 73(8): 3720-3730. |
[12] | 顾仁杰, 张加威, 靳雪阳, 文利雄. 微撞击流反应器制备镍钴复合氢氧化物超级电容器材料及其性能研究[J]. 化工学报, 2022, 73(8): 3749-3757. |
[13] | 范小强, 黄正梁, 孙婧元, 王靖岱, 王晓飞, 胡晓波, 韩国栋, 阳永荣, 吴文清. 气液法流化床乙烯云聚合工艺开发及产品高性能化[J]. 化工学报, 2022, 73(6): 2742-2747. |
[14] | 马永丽, 刘明言, 胡宗定. 气液固流化床流动介尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2438-2451. |
[15] | 牛犁, 刘梦溪, 王海北. 密相流化床中介尺度流动结构的流体力学特性研究[J]. 化工学报, 2022, 73(6): 2622-2635. |
阅读次数 | ||||||||||||||||||||||
全文 258
|
|
|||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||