化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1519-1527.DOI: 10.11949/0438-1157.20221562
张浩1(), 徐惠斌1,2(), 高健1, 刘帝宏1, 周泽华1
收稿日期:
2022-12-05
修回日期:
2023-02-23
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
徐惠斌
作者简介:
张浩(1998—),男,硕士研究生,zhangh199812@163.com
基金资助:
Hao ZHANG1(), Huibin XU1,2(), Jian GAO1, Dihong LIU1, Zehua ZHOU1
Received:
2022-12-05
Revised:
2023-02-23
Online:
2023-04-05
Published:
2023-06-02
Contact:
Huibin XU
摘要:
针对湿颗粒流动性较差、倾斜落料困难的问题,建立了机械振动耦合辅助流化风的可视化倾斜落料实验装置,研究了液体饱和度S、表面张力σ和倾斜角度δ对三种Geldart-D类湿颗粒(塑料珠、玻璃珠、氧化锆珠)倾斜落料量的影响,并对机械振动、辅助流化风和振动耦合辅助流化风三种助流落料方法进行了实验比较。研究结果表明,受液桥力影响,湿颗粒落料过程的质量流量qm较干颗粒降低60%以上。随振动强度Γ和辅助流化风气速uf的增加,湿颗粒质量流量qm增加,其中振动强度Γ对重质类颗粒(玻璃珠、氧化锆珠)的强化效果较佳,辅助流化风气速uf对轻质类颗粒(塑料珠)的强化效果较佳。相同能耗条件下,振动耦合辅助流化风具有更高的质量流量qm,是相对节能的助流落料方法。
中图分类号:
张浩, 徐惠斌, 高健, 刘帝宏, 周泽华. Geldart-D类湿颗粒倾斜落料行为及其强化[J]. 化工学报, 2023, 74(4): 1519-1527.
Hao ZHANG, Huibin XU, Jian GAO, Dihong LIU, Zehua ZHOU. Geldart-D wet particle tilt-fall behavior and its reinforcement[J]. CIESC Journal, 2023, 74(4): 1519-1527.
图1 机械振动耦合辅助流化风的可视化倾斜落料实验装置系统1—罗茨鼓风机;2—储气罐;3—球阀;4—转子流量计;5—振动台;6—振动控制箱;7—床体;8—可拆卸的倾斜底板;9—闸门;10—烧杯;11—电子天平
Fig.1 Schematic of the visualized tilt-fall experimental setup with mechanical vibration coupled with auxiliary fluidized gas1—Roots blower; 2—gas storage tank; 3—ball valve; 4—rotor flow meter; 5—vibration table; 6—vibration control box; 7—bed; 8—removable inclined bottom plate; 9—gate; 10—beaker; 11—electronic balance
编号 | 种类 | 平均直径dp/mm | 真实密度ρp/(g·ml-1) | 堆积密度ρb/(g·ml-1) | 空隙率ε |
---|---|---|---|---|---|
Particle 1 | 塑料珠 | 2.0 | 1.19 | 0.75 | 0.37 |
Particle 2 | 玻璃珠 | 2.0 | 2.23 | 1.39 | 0.38 |
Particle 3 | 氧化锆珠 | 2.0 | 2.93 | 1.82 | 0.38 |
表1 实验用颗粒物性
Table 1 Properties of experimental particles
编号 | 种类 | 平均直径dp/mm | 真实密度ρp/(g·ml-1) | 堆积密度ρb/(g·ml-1) | 空隙率ε |
---|---|---|---|---|---|
Particle 1 | 塑料珠 | 2.0 | 1.19 | 0.75 | 0.37 |
Particle 2 | 玻璃珠 | 2.0 | 2.23 | 1.39 | 0.38 |
Particle 3 | 氧化锆珠 | 2.0 | 2.93 | 1.82 | 0.38 |
编号 | 成分 | 表面张力σ/(mN·m-1) | 液体动力黏度μ/(mPa·s) | |
---|---|---|---|---|
CaCl2溶液/ %(mass) | TritonX-100/ %(mass) | |||
1 | 35 | 0 | 86.2 | 15.2 |
2 | 35 | 0.02 | 66.0 | 15.2 |
3 | 35 | 0.08 | 54.1 | 15.2 |
4 | 35 | 0.26 | 47.6 | 15.2 |
表2 实验用液体物性
Table 2 Properties of experimental liquids
编号 | 成分 | 表面张力σ/(mN·m-1) | 液体动力黏度μ/(mPa·s) | |
---|---|---|---|---|
CaCl2溶液/ %(mass) | TritonX-100/ %(mass) | |||
1 | 35 | 0 | 86.2 | 15.2 |
2 | 35 | 0.02 | 66.0 | 15.2 |
3 | 35 | 0.08 | 54.1 | 15.2 |
4 | 35 | 0.26 | 47.6 | 15.2 |
振动强度Γ | 工作电压UΓ /V | 工作电流IΓ /A |
---|---|---|
0.4 | 323 | 0.4 |
0.8 | 323 | 0.6 |
1.2 | 324 | 0.9 |
1.6 | 324 | 1.1 |
1.9 | 324 | 1.3 |
表3 振动强度Γ与工作电流IΓ 、电压UΓ 对照
Table 3 Comparison of vibration intensity Γ with operating current IΓ and voltage UΓ
振动强度Γ | 工作电压UΓ /V | 工作电流IΓ /A |
---|---|---|
0.4 | 323 | 0.4 |
0.8 | 323 | 0.6 |
1.2 | 324 | 0.9 |
1.6 | 324 | 1.1 |
1.9 | 324 | 1.3 |
图7 机械振动耦合辅助流化风对湿颗粒倾斜落料过程质量流量的影响
Fig.7 Effect of mechanical vibration coupled with auxiliary fluidized gas on the mass flow rate of wet particles during tilt-fall
1 | Mitarai N, Nori F. Wet granular materials[J]. Advances in Physics, 2006, 55(1/2): 1-45. |
2 | Zhou H, Xiong Y. Conveying mechanisms of dense-phase pneumatic conveying of pulverized lignite in horizontal pipe under high pressure[J]. Powder Technology, 2020, 363: 7-22. |
3 | Fries L, Antonyuk S, Heinrich S, et al. DEM-CFD modeling of a fluidized bed spray granulator[J]. Chemical Engineering Science, 2011, 66(11): 2340-2355. |
4 | Wu D L, Zhou P, Wang G, et al. A theoretical study of particle coalescence criteria for inelastic collisions of wet particles[J]. Chemical Engineering Science, 2021, 243: 116770. |
5 | Zaalouk A K, Zabady F I. Effect of moisture content on angle of repose and friction coefficient of wheat grain[J]. MISR Journal of Agricultural Engineering, 2009, 26(1): 418-427. |
6 | Jia D, Cathary O, Peng J, et al. Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow[J]. Fuel Processing Technology, 2015, 138: 471-482. |
7 | Zhou Y F, Shi Q, Huang Z L, et al. Effects of liquid action mechanisms on hydrodynamics in liquid-containing gas-solid fluidized bed reactor[J]. Chemical Engineering Journal, 2016, 285: 121-127. |
8 | Zhou Y F, Li H, Zhu M Y, et al. Effects of liquid content and surface tension on fluidization characteristics in a liquid-containing gas-solid fluidized bed: a CFD-DEM study[J]. Chemical Engineering and Processing - Process Intensification, 2020, 153: 107928. |
9 | Xu H B, Wang W Y, Ma C, et al. Recent advances in studies of wet particle fluidization characteristics[J]. Powder Technology, 2022, 409: 117805. |
10 | Passos M L, Mujumdar A S. Effect of cohesive forces on fluidized and spouted beds of wet particles[J]. Powder Technology, 2000, 110(3): 222-238. |
11 | Sutkar V S, Deen N G, Patil A V, et al. Experimental study of hydrodynamics and thermal behavior of a pseudo-2D spout-fluidized bed with liquid injection[J]. AIChE Journal, 2015, 61(4): 1146-1159. |
12 | Anand A, Curtis J S, Wassgren C R, et al. Experimental study of wet cohesive particles discharging from a rectangular hopper [J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4545-4551. |
13 | Kalman H. Effect of moisture content on flowability: angle of repose, tilting angle, and hausner ratio[J]. Powder Technology, 2021, 393: 582-596. |
14 | Pan S Y, Ma J L, Liu D Y, et al. Theoretical and experimental insight into the homogeneous expansion of wet particles in a fluidized bed[J]. Powder Technology, 2022, 397: 117016. |
15 | Zhang Y W, Abatzoglou N, Hudon S, et al. Dynamics of heat-sensitive pharmaceutical granules dried in a horizontal fluidized bed combined with a screw conveyor[J]. Chemical Engineering and Processing - Process Intensification, 2021, 167: 108516. |
16 | Xu H B, Gao J, Zhong W Q, et al. Experimental study on the fluidization discharging characteristics of Geldart-C kaolin powders in a blow tank with pulsed gas[J]. Advanced Powder Technology, 2022, 33: 103372. |
17 | Barletta D, Poletto M. Aggregation phenomena in fluidization of cohesive powders assisted by mechanical vibrations[J]. Powder Technology, 2012, 225: 93-100. |
18 | 唐天琪, 何玉荣. 磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648. |
Tang T Q, He Y R. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed[J]. CIESC Journal, 2022, 73(6): 2636-2648. | |
19 | Liu Y, Ohara H, Tsutsumi A. Pulsation-assisted fluidized bed for the fluidization of easily agglomerated particles with wide size distributions[J]. Powder Technology, 2017, 316: 388-399. |
20 | Ma C, Xu H B, Zhong W Q, et al. Experimental study on fluidization characteristics of vinegar residue in a vibrated fluidized bed[J]. Advanced Powder Technology, 2022, 33(8): 103698. |
21 | Xu H B, Zhong W Q, Shao Y J, et al. Experimental study on mixing behaviors of wet particles in a bubbling fluidized bed[J]. Powder Technology, 2018, 340: 26-33. |
22 | 潘苏阳. 含液气固流化床内液体的迁移机制研究[D]. 南京: 东南大学, 2021. |
Pan S Y. Liquid transport mechanism during liquid-containing fluidization[D]. Nanjing: Southeast University, 2021. | |
23 | Hemati M, Cherif R, Saleh K, et al. Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics[J]. Powder Technology, 2003, 130(1/3):18-34. |
24 | 高健, 钟文琪, 徐惠斌, 等. 湿颗粒的振动流化特性实验研究[J]. 东南大学学报(自然科学版), 2018, 48(1): 71-77. |
Gao J, Zhong W Q, Xu H B, et al. Experimental study on vibrating fluidization characteristics of wet particles[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(1): 71-77. | |
25 | Rossetti D, Pepin X, Simons S J R. Rupture energy and wetting behavior of pendular liquid bridges in relation to the spherical agglomeration process[J]. Journal of Colloid and Interface Science, 2003, 261(1): 161-169. |
26 | Pitois O, Moucheront P, Chateau X. Liquid bridge between two moving spheres: an experimental study of viscosity effects[J]. Journal of Colloid and Interface Science, 2000, 231(1): 26-31. |
27 | Boyce C M. Gas-solid fluidization with liquid bridging: a review from a modeling perspective[J]. Powder Technology, 2018, 336: 12-29. |
28 | Schneider T, Bridgwater J. The stability of wet spouted beds[J]. Drying Technology, 1993, 11(2): 277-301. |
29 | Bacelos M S, Passos M L, Freire J T. Effect of interparticle forces on the conical spouted bed behavior of wet particles with size distribution[J]. Powder Technology, 2007, 174(3): 114-126. |
30 | Feng C L, Yu A B. Quantification of the relationship between porosity and interparticle forces for the packing of wet uniform spheres[J]. Journal of Colloid and Interface Science, 2000, 231(1): 136-142. |
31 | Wen C Y, Yu Y H. Mechanics of fluidization[J]. The Chemical Engineering Progress Symposium Series, 1966, 62(62): 100-105. |
32 | Dai L, Yuan Z, Guan L, et al. Fluidization dynamics of wet Geldart D particles by pressure fluctuation analysis[J]. Powder Technology, 2021, 388: 450-461. |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[5] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[6] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[7] | 赵健, 周兴超, 夏丹, 董航. 机械搅拌对原油储罐射流加热过程传热特性的影响规律研究[J]. 化工学报, 2023, 74(5): 1982-1999. |
[8] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[9] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[10] | 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538. |
[11] | 王倩倩, 刘明言, 马永丽. 水中超声波脱气的效应研究[J]. 化工学报, 2023, 74(4): 1693-1702. |
[12] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
[13] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[14] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
[15] | 黄心童, 耿宇昊, 刘恒源, 陈卓, 徐建鸿. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||