化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2039-2051.doi: 10.11949/0438-1157.20211646

• 过程系统工程 • 上一篇    下一篇

基于混合建模的水泥生料分解过程动态特性研究

戚子豪1(),钟文琪1(),陈曦1,周冠文1,赵小亮2,辛美静2,陈翼2,朱永长2   

  1. 1.东南大学能源热转换及其过程测控教育部重点实验室,江苏 南京 210096
    2.中国中材国际工程股份有限公司(南京),江苏 南京 211106
  • 收稿日期:2021-11-17 修回日期:2022-03-07 出版日期:2022-05-05 发布日期:2022-05-24
  • 通讯作者: 钟文琪 E-mail:qizihao1014@163.com;wqzhong@seu.edu.cn
  • 作者简介:戚子豪(1996—),男,硕士研究生,qizihao1014@163.com

Research on dynamic characteristics of cement raw meal decomposition process based on hybrid modeling

Zihao QI1(),Wenqi ZHONG1(),Xi CHEN1,Guanwen ZHOU1,Xiaoliang ZHAO2,Meijing XIN2,Yi CHEN2,Yongchang ZHU2   

  1. 1.Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, Jiangsu, China
    2.Sinoma International Engineering Co. , Ltd. , Nanjing 211106, Jiangsu, China
  • Received:2021-11-17 Revised:2022-03-07 Published:2022-05-05 Online:2022-05-24
  • Contact: Wenqi ZHONG E-mail:qizihao1014@163.com;wqzhong@seu.edu.cn

摘要:

为掌握水泥分解炉运行过程的动态特性,采用机理建模与神经网络相结合的方法构建了水泥分解炉一维特性模型,并结合工业数据对该方法的可行性进行验证。结果表明,模型能够准确地计算炉内温度、气体浓度等参数,具有良好的泛化性能。基于所提出的模型,研究了炉内各状态参数的稳态分布特性。此外,对喷煤量、生料下料量、喷氨量以及高温风机转速等操作变量进行阶跃实验,分析上述操作变量改变时分解炉出口温度及出口NO x 含量的动态响应情况。研究所得相关动态特性规律可以为控制系统的分析、设计和优化提供参考与依据。

关键词: 水泥分解炉, 混合模型, 动态仿真, 神经网络, 多相反应器

Abstract:

In order to understand the dynamic characteristics of cement precalciner, a one-dimensional hybrid model combined of reaction mechanism and neural network was constructed. Feasibility of this method was verified by comparison with industrial data. The results show that the hybrid model can accurately calculate temperature, gas concentration and other parameters in the furnace. Distribution of each parameter along the direction of flue gas flow is consistent with the actual situation. Based on the proposed model, the steady-state distribution characteristics of various state parameters in the furnace were studied. Furthermore, step response tests were carried out. Dynamic responses of temperature and NO x concentration at furnace outlet were researched when the coal feeding rate, limestone feeding rate, ammonia injection rate and other manipulated parameters were changed respectively. The relevant dynamic characteristics obtained from the research can provide reference for the analysis, design and optimization of the control system.

Key words: cement precalciner, hybrid model, dynamic simulation, neural networks, multiphase reactor

中图分类号: 

  • TQ 172

图1

分解炉模型及控制体划分"

表1

分解炉参数"

名称数值
分解炉高度/mm78
分解炉主体直径/m8.4
轴向长度/m98.6
气体停留时间/s7~8
进料量/(t/h)360
生料温度/℃800
分解炉喂煤量/(t/h)11
投煤温度/℃60
喷氨量/(kg/吨熟料)3
氨水浓度/%20
排烟温度/℃880

表2

燃料特性参数"

元素分析/%工业分析/%低位发热量/(MJ/kg)
CadHadOadSadNadAadFCadVadMad
67.733.893.591.031.4122.3454.3220.212.1123.93

图2

混合模型框架"

图3

神经网络参数更新过程"

图4

固气停留时间比的影响"

表3

计算结果"

预测对象计算值实际值
出口温度/K11641160
出口压力/Pa-900-851
碳酸钙分解率/%9695
煤炭燃尽率/%98
O2含量/%2.432.27
CO含量/%0.01950.0217
NO x 含量/(mg/m37566

图5

温度及NO x 浓度的模型预测值与真实值对比"

图6

计算误差分布"

表4

训练集与测试集误差对比"

项目训练集测试集
RMSEMAPERMSEMAPE
温度4.06 K0.34%6.72 K0.50%
NO x 浓度6.22 mg/m37.27%7.35 mg/m39.01%

图7

模型预测值与真实值对比"

图8

给煤量阶跃变化"

图9

生料量阶跃变化"

图10

喷氨量阶跃变化"

图11

高温风机转速阶跃变化"

附表1

炉内挥发分、焦炭燃烧与碳酸钙分解计算公式"

变量名称方程变量名称方程
挥 发 分 析 出挥发分析出量Vvol=XVM-A-BA=exp(26.41-3.691lnT+1.15XVM)B=0.2(XVM-10.9)焦 炭 燃 烧氧气扩散系数DgT,P=DgT0,P0TT01.75P0P
Reynolds 数ReT=Arε4.7518+0.61Arε4.740.5
Schmidt 数Sc=μgρgDg
挥发分含量YCH4=0.201-0.469XVM+0.241XVM2YH2=0.157-0.868XVM+1.388XVM2YCO2=0.135-0.900XVM+1.906XVM2YCO=0.428-2.653XVM+4.845XVM2YH2O=0.409-2.389XVM+4.554XVM2Ytar=-0.325+7.279XVM-12.880XVM2
Archimedes 数Ar=gdp3ρgρp-ρgμ
碳 酸 钙 分 解分解速率kCaCO3=1kph+1ηkch-1
焦 炭 燃 烧焦炭燃烧化学机械因子?=2Kr+2Kr+2dp<0.05mm2Kr+2-Kr0.095dp-0.0050.05mm<dp1mmKr+2dp>1.0mm孔隙效率因子η=tanhd6k?ch?D/d6k?ch?D
分子扩散系数D=1Dbin+1Dknu-1
CO/CO2浓度 生成比Kr=2515exp-5.19×104RgTcDbin=0.0266T1.5pMAB0.5σAB2ωd
颗粒表面温度Tc=T+6.6×104CO2Dknu=dpore38RCO2Tπ0.5
单个焦炭颗粒反应速率rc=πdc2kcCO2扩散系数校正因子?=εpτp2
焦炭燃烧反应速率kc=1/1?kcd+1kcsCO2平衡 分压peq=4.137×1012exp-20474T
化学反应速率kcs=8710exp--1.4947×108RTc化学反应速率

kch=kDpeq-pCO2MCaCO31000

kD=1.22×10-5exp-4026T

扩散反应速率kcd=ShDgdc扩散反应速率kph=12DShRCO2dCaCO3Tpref
Sherwood 数Sh=2+0.6ReT0.5Sc0.33碳酸钙质量变化速率dmCaCO3dt=-kCaCO3πdCaCO32

附表2

炉内均相反应速率"

化学反应催化剂反应速率
(1) 2H2+O22H2Or1=k1CH21.5CO2k1=1.63×109T1.5exp-3420T
(2) CH4+32O2CO+H2Or2=k2CCH40.7CO20.8k2=1.585×1010exp-24157T
(3) CO+12O2CO2r3=k3CCOCH2O0.5CO20.3k3=1.9×106exp-8050T
(4) tar+7.5O26CO2+H2Or4=k4CtarCO2k4=3.8×107exp-0.555×108T
(5) NH3+NO+14O2N2+32H2Or5=k5CNH3CNOk5=2.45×1017exp-29400T
CaOr5'=k5'CNH3k5'=0.73×106exp-7000T
(6) NH3+54O2NO+32H2Or6=k6CNH3k6=2.21×1014exp-38160T
charr6'=k6'CNH3CO2k6'=4.95×1012exp-15000T
CaOr6=k6CNH3CO2k6=2.67×1010exp-10000T
(7) 2NH3+32O2N2+3H2Ocharr7=k7CNH3CO2k7=1.58×1013exp-15000T
CaOr7'=k7'CNH3CO2k7'=6.65×109exp-10000T
(8) NO+COCO2+12N2charr8=k8pNOk81pNO+k82k8pNO+k81pNO+k82k8=2.1×10-6exp-13000T
k81=7.3×10-9exp-9560T
k82=0.015exp-20100T
CaOr8'=k8'CNOCCOk8'=1.58×108exp-8920T
(9) NO+H2H2O+12N2Charr9=k9CNOCH2k9=4.6Texp-12120T
CaOr9'=k9'CNOCH2k9'=7×1010exp-9320T
(10) HCN+O2NO+COr10=k10ρCO2bCHCNk10=1011exp-33700T
1 Gungor A. Simulation of NO x emission in circulating fluidized beds burning low-grade fuels[J]. Energy & Fuels, 2009, 23(5): 2475-2481.
2 Gungor A. One dimensional numerical simulation of small scale CFB combustors[J]. Energy Conversion and Management, 2009, 50(3): 711-722.
3 Wu H C, Yang C, He H X, et al. A hybrid simulation of a 600 MW supercritical circulating fluidized bed boiler system[J]. Applied Thermal Engineering, 2018, 143: 977-987.
4 Ke X W, Li D F, Li Y R, et al. 1-Dimensional modelling of in-situ desulphurization performance of a 550 MWe ultra-supercritical CFB boiler[J]. Fuel, 2021, 290: 120088.
5 毛玉如. 循环流化床富氧燃烧技术的试验和理论研究[D]. 杭州: 浙江大学, 2003.
Mao Y R. Theoretical and experimental study on oxygen-enriched combustion technology in circulating fluidized bed[D]. Hangzhou: Zhejiang University, 2003.
6 魏莉, 钟文琪, 邵应娟. 煤流化床加压富氧燃烧过程的动态特性[J]. 东南大学学报(自然科学版), 2020, 50(2): 358-367.
Wei L, Zhong W Q, Shao Y J. Dynamic characteristics of pressurized oxy-fuel combustion in fluidized bed[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(2): 358-367.
7 戚龙周. 600MW超临界直流锅炉热力性能建模与仿真研究[D]. 武汉: 华中科技大学, 2012.
Qi L Z. Modeling and simulation research on thermodynamic performances of 600MW supercritical once through boiler[D]. Wuhan: Huazhong University of Science and Technology, 2012.
8 Magnanelli E, Tranås O L, Carlsson P, et al. Dynamic modeling of municipal solid waste incineration[J]. Energy, 2020, 209: 118426.
9 谢海立. 垃圾焚烧炉排炉的炉内过程动态特性数字仿真[D]. 南京: 东南大学, 2017.
Xie H L. Numerical simulation on the dynamic characteristics of combustion in mechanical grate incinerator[D]. Nanjing: Southeast University, 2017.
10 Jensen L S. NO x from cement production-reduction by primary measures[D]. Denmark: Technical University of Denmark, 1999.
11 Iliuta I, Dam-Johansen K, Jensen L S. Mathematical modeling of an in-line low-NO x calciner[J]. Chemical Engineering Science, 2002, 57(5): 805-820.
12 Iliuta I, Dam-Johansen K, Jensen A, et al. Modeling of in-line low-NO x calciners—a parametric study[J]. Chemical Engineering Science, 2002, 57(5): 789-803.
13 Iliuta I, Dam-Johansen K, Jensen A. Modelling of in-line low-NO x calciners-NO x emission[J]. Chemical Engineering Research and Design, 2003, 81(5): 537-548.
14 Nieuwland J J, Delnoij E, Kuipers J A M, et al. An engineering model for dilute riser flow[J]. Powder Technology, 1997, 90(2): 115-123.
15 Fellaou S, Harnoune A, Seghra M A, et al. Statistical modeling and optimization of the combustion efficiency in cement kiln precalciner[J]. Energy, 2018, 155: 351-359.
16 Hao X C, Guo T T, Huang G L, et al. Energy consumption prediction in cement calcination process: a method of deep belief network with sliding window[J]. Energy, 2020, 207: 118256.
17 Hao X C, Xu Q Q, Shi X, et al. Prediction of nitrogen oxide emission concentration in cement production process: a method of deep belief network with clustering and time series[J]. Environmental Science and Pollution Research International, 2021, 28(24): 31689-31703.
18 He W, Li J F, Tang Z H, et al. A novel hybrid CNN-LSTM scheme for nitrogen oxide emission prediction in FCC unit[J]. Mathematical Problems in Engineering, 2020, 2020: 8071810.
19 Hvala N, Kocijan J. Design of a hybrid mechanistic/Gaussian process model to predict full-scale wastewater treatment plant effluent[J]. Computers & Chemical Engineering, 2020, 140: 106934.
20 Bangi M S F, Kwon J S I. Deep hybrid modeling of chemical process: application to hydraulic fracturing[J]. Computers & Chemical Engineering, 2020, 134: 106696.
21 Bhadriraju B, Bangi M S F, Narasingam A, et al. Operable adaptive sparse identification of systems: application to chemical processes[J]. AIChE Journal, 2020, 66(11): e16980.
22 Nielsen R F, Nazemzadeh N, Sillesen L W, et al. Hybrid machine learning assisted modelling framework for particle processes[J]. Computers & Chemical Engineering, 2020, 140: 106916.
23 华丰, 方舟, 邱彤. 乙烯裂解炉反应与传热耦合的智能混合建模与模拟[J]. 化工学报, 2018, 69(3): 923-930.
Hua F, Fang Z, Qiu T. Recirculation and reaction hybrid intelligent modeling and simulation for industrial ethylene cracking furnace[J]. CIESC Journal, 2018, 69(3): 923-930.
24 von Stosch M, Oliveira R, Peres J, et al. Hybrid semi-parametric modeling in process systems engineering: past, present and future[J]. Computers & Chemical Engineering, 2014, 60: 86-101.
25 Venkatasubramanian V. The promise of artificial intelligence in chemical engineering: is it here, finally? [J]. AIChE Journal, 2019, 65(2): 466-478.
26 Zendehboudi S, Rezaei N, Lohi A. Applications of hybrid models in chemical, petroleum, and energy systems: a systematic review[J]. Applied Energy, 2018, 228: 2539-2566.
27 Hill S C, Smoot L D. Modeling of nitrogen oxides formation and destruction in combustion systems[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 417-458.
28 Yang Y, Zhang Y, Li S J, et al. Numerical simulation of low nitrogen oxides emissions through cement precalciner structure and parameter optimization[J]. Chemosphere, 2020, 258: 127420.
29 Mickley H S, Trilling C A. Heat transfer characteristics of fluidized beds[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1135-1147.
30 苏亚欣, 骆仲泱, 岑可法. 循环流化床颗粒团更新传热模型的修正[J]. 动力工程, 2001, 21(5): 1426-1429, 1416.
Su Y X, Luo Z Y, Cen K F. Modification to the CFB cluster-renewal heat transfer model[J]. Power Engineering, 2001, 21(5): 1426-1429, 1416.
31 Smoot L D, Smith P J. Coal Combustion and Gasification[M]. New York: Plenum Press, 1985.
32 Liu Z C, Zhong W Q, Shao Y J, et al. Exergy analysis of supercritical CO2 coal-fired circulating fluidized bed boiler system based on the combustion process[J]. Energy, 2020, 208: 118327.
33 Field M A, Gill D W, Morgan B B, et al. Combustion of Pulverized Coal[M]. Leatherhead: BCURA, 1967.
34 Zhong W Q, Yu A B, Zhou G W, et al. CFD simulation of dense particulate reaction system: approaches, recent advances and applications[J]. Chemical Engineering Science, 2016, 140: 16-43.
35 Basu P. Combustion of coal in circulating fluidized-bed boilers: a review[J]. Chemical Engineering Science, 1999, 54(22): 5547-5557.
36 Mikulčić H, Vujanović M, Duić N. Improving the sustainability of cement production by using numerical simulation of limestone thermal degradation and pulverized coal combustion in a cement calciner[J]. Journal of Cleaner Production, 2015, 88: 262-271.
37 Fidaros D K, Baxevanou C A, Dritselis C D, et al. Numerical modelling of flow and transport processes in a calciner for cement production[J]. Powder Technology, 2007, 171(2): 81-95.
38 Mikulčić H, von Berg E, Vujanović M, et al. Numerical modelling of calcination reaction mechanism for cement production[J]. Chemical Engineering Science, 2012, 69(1): 607-615.
39 胡芝娟, 刘志江, 王世杰. 模拟分解炉中煤焦燃烧生成NO的特性[J]. 化工学报, 2005, 56(3): 545-550.
Hu Z J, Liu Z J, Wang S J. NO formation from coal char combustion in cement precalciner[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(3): 545-550.
40 黄来, 陆继东, 李卫杰, 等. 分解炉中NO生成模拟与优化[J]. 化工学报, 2006, 57(11): 2624-2630.
Huang L, Lu J D, Li W J, et al. Numerical simulation of NO in precalciner and its optimization[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(11): 2624-2630.
41 胡道和, 徐德龙, 蔡玉良. 气固过程工程学及其在水泥工业中的应用[M]. 武汉: 武汉理工大学出版社, 2003.
Hu D H. Xu D L, Cai Y L. Gas Solid Process Engineering and Its Application in Cement Industry[M]. Wuhan: Wuhan University of Technology Press, 2003.
42 金涌. 流态化工程原理[M]. 北京: 清华大学出版社, 2001.
Jin Y. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001.
43 Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
44 李昌勇, 金春强, 胡道和. SLC-S分解炉气固两相运动规律研究[J]. 燃烧科学与技术, 2003, 9(3): 239-243.
Li C Y, Jin C Q, Hu D H. Synthetic study of the motion patterns of gas and solid phases in SLC-S calciner[J]. Journal of Combustion Science and Technology, 2003, 9(3): 239-243.
45 李相国, 马保国, 吴贝, 等. 喷腾型分解炉内冷态流场的模拟与优化设计[J]. 哈尔滨工业大学学报, 2009, 41(4): 226-228.
Li X G, Ma B G, Wu B, et al. Numerical simulation and optimization of cold airflow field in sprayed calciners[J]. Journal of Harbin Institute of Technology, 2009, 41(4): 226-228.
[1] 孙哲, 金华强, 李康, 顾江萍, 黄跃进, 沈希. 基于知识数据化表达的制冷空调系统故障诊断方法[J]. 化工学报, 2022, 73(7): 3131-3144.
[2] 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
[3] 任嘉辉, 刘豫, 刘朝, 刘浪, 李莹. 基于分子指纹和拓扑指数的工质临界温度理论预测[J]. 化工学报, 2022, 73(4): 1493-1500.
[4] 刘立邦, 杨颂, 王志坚, 贺欣欣, 赵文磊, 刘守军, 杜文广, 米杰. 基于改进WOA-LSTM的焦炭质量预测[J]. 化工学报, 2022, 73(3): 1291-1299.
[5] 张成, 潘立志, 李元. 基于加权统计特征KICA的故障检测与诊断方法[J]. 化工学报, 2022, 73(2): 827-837.
[6] 袁壮, 凌逸群, 杨哲, 李传坤. 基于TA-ConvBiLSTM的化工过程关键工艺参数预测[J]. 化工学报, 2022, 73(1): 342-351.
[7] 王佳星, 赵家睿, 李斯特, 付媛, 刘凤杰, 韦昌. 不同放汽阀流量特性对弹射过程的影响规律[J]. 化工学报, 2021, 72(S1): 318-325.
[8] 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105.
[9] 唐晓婕, 杨博, 李宏光. 复杂化工过程调控操纵策略的深度学习方法[J]. 化工学报, 2021, 72(9): 4830-4837.
[10] 颜建国, 郑书闽, 郭鹏程, 张博, 毛振凯. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657.
[11] 姚源朝, 仇鹏, 许建良, 代正华, 刘海峰. 基于混合模型的气流床气化炉建模[J]. 化工学报, 2021, 72(5): 2727-2734.
[12] 谢昊源, 黄群星, 林晓青, 李晓东, 严建华. 基于图像深度学习的垃圾热值预测研究[J]. 化工学报, 2021, 72(5): 2773-2782.
[13] 孙浩然, 吕中原, 吴成云, 胡海涛. 机载补气增焓制冷系统动态仿真模型[J]. 化工学报, 2021, 72(5): 2484-2492.
[14] 江锦波, 滕黎明, 孟祥铠, 李纪云, 彭旭东. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202.
[15] 李浩然, 邱彤. 基于因果分析的烧结生产状态预测模型[J]. 化工学报, 2021, 72(3): 1438-1446.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!