化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2158-2173.DOI: 10.11949/0438-1157.20211693
赵希强1(),张健1,孙爽1,王文龙1,毛岩鹏1,孙静1,刘景龙2,宋占龙1(
)
收稿日期:
2021-11-29
修回日期:
2022-01-27
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
宋占龙
作者简介:
赵希强(1981—),男,博士,副教授,基金资助:
Xiqiang ZHAO1(),Jian ZHANG1,Shuang SUN1,Wenlong WANG1,Yanpeng MAO1,Jing SUN1,Jinglong LIU2,Zhanlong SONG1(
)
Received:
2021-11-29
Revised:
2022-01-27
Online:
2022-05-05
Published:
2022-05-24
Contact:
Zhanlong SONG
摘要:
我国化工废水排放量巨大,其中含有的无机磷会导致淡水富营养化。选用来源广泛且环境友好的海藻酸钠为载体,微波一步热解活化法制得的高比表面积甘蔗渣生物炭为添加剂,氯化铁溶液为交联剂,通过溶胶凝胶法和包埋法制备了SA-Fe、SA-C-Fe和SA-C-Fe(C)三种吸附材料,并用其进行了无机磷的去除实验。研究发现三种材料的吸附过程均符合准二级动力学模型,其中SA-Fe和SA-C-Fe的吸附过程符合Langmuir等温模型,其对无机磷的最大吸附量分别为53.79 mg/g和78.75 mg/g;SA-C-Fe(C)对无机磷的吸附过程符合Langmuir-Freundlich等温吸附模型。SA-C-Fe材料吸附无机磷过程存在配体交换、静电吸引和表面沉积三种吸附机制,吸附容量最高;SA-C-Fe(C)微球经过碳化后,羟基官能团数量减少,配体交换作用减弱,且形成了铁氧化物沉积层,吸附容量最低。
中图分类号:
赵希强, 张健, 孙爽, 王文龙, 毛岩鹏, 孙静, 刘景龙, 宋占龙. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173.
Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater[J]. CIESC Journal, 2022, 73(5): 2158-2173.
材料 | Langmuir等温模型 | Freundlich等温模型 | Langmuir- Freundlich等温模型 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Qm/(mg/g) | KL/(10-2 L/mg) | R2 | KF/(L/mg) | 1/n | R2 | Qm/(mg/g) | Kb/(10-2 L/mg) | n | R2 | |
SA-Fe | 53.79 | 1.47 | 0.970 | 4.85 | 0.38 | 0.930 | 55.85 | 1.34 | 0.94 | 0.965 |
SA-C-Fe | 78.75 | 1.17 | 0.955 | 5.31 | 0.42 | 0.945 | 97.94 | 0.65 | 0.78 | 0.951 |
SA-C-Fe(C) | 44.31 | 1.40 | 0.961 | 3.85 | 0.39 | 0.965 | 63.65 | 0.50 | 0.66 | 0.972 |
表1 Langmuir、Freundlich和Langmuir-Freundlich等温模型相关参数
Table1 Related parameters of Langmuir, Freundlich and Langmuir-Freundlich isotherm models
材料 | Langmuir等温模型 | Freundlich等温模型 | Langmuir- Freundlich等温模型 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Qm/(mg/g) | KL/(10-2 L/mg) | R2 | KF/(L/mg) | 1/n | R2 | Qm/(mg/g) | Kb/(10-2 L/mg) | n | R2 | |
SA-Fe | 53.79 | 1.47 | 0.970 | 4.85 | 0.38 | 0.930 | 55.85 | 1.34 | 0.94 | 0.965 |
SA-C-Fe | 78.75 | 1.17 | 0.955 | 5.31 | 0.42 | 0.945 | 97.94 | 0.65 | 0.78 | 0.951 |
SA-C-Fe(C) | 44.31 | 1.40 | 0.961 | 3.85 | 0.39 | 0.965 | 63.65 | 0.50 | 0.66 | 0.972 |
材料 | 准一级动力学模型 | 准二级动力学模型 | 颗粒内扩散模型 | |||||
---|---|---|---|---|---|---|---|---|
Qe/(mg/L) | k1/(10-2 min-1) | R2 | Qe/(mg/L) | k2/(10-3 g/(mg·min)) | R2 | kp/(mg/(g·min0.5)) | R2 | |
SA-Fe | 16.14 | 0.19 | 0.989 | 19.26 | 0.23 | 0.991 | 0.33 | 0.924 |
SA-C-Fe | 9.07 | 0.15 | 0.907 | 21.91 | 0.87 | 0.997 | 0.190 | 0.738 |
SA-C-Fe(C) | 6.86 | 0.19 | 0.945 | 15.89 | 1.27 | 0.999 | 0.152 | 0.693 |
表2 吸附动力学模型及其参数
Table 2 Adsorption kinetic model and parameters
材料 | 准一级动力学模型 | 准二级动力学模型 | 颗粒内扩散模型 | |||||
---|---|---|---|---|---|---|---|---|
Qe/(mg/L) | k1/(10-2 min-1) | R2 | Qe/(mg/L) | k2/(10-3 g/(mg·min)) | R2 | kp/(mg/(g·min0.5)) | R2 | |
SA-Fe | 16.14 | 0.19 | 0.989 | 19.26 | 0.23 | 0.991 | 0.33 | 0.924 |
SA-C-Fe | 9.07 | 0.15 | 0.907 | 21.91 | 0.87 | 0.997 | 0.190 | 0.738 |
SA-C-Fe(C) | 6.86 | 0.19 | 0.945 | 15.89 | 1.27 | 0.999 | 0.152 | 0.693 |
性质 | SA-Fe | SA-C-Fe | SA-C-Fe(C) |
---|---|---|---|
比表面积/(m2/g) | 85.58 | 756.25 | 987.55 |
平均孔径/nm | 7.30 | 3.48 | 3.41 |
总孔容/(cm3/g) | 0.16 | 0.66 | 0.84 |
表3 海藻酸钠改性微球(SA-Fe、SA-C-Fe、SA-C-Fe(C))的BET表征结果
Table 3 BET characterization results of sodium alginate modified microspheres (SA-Fe, SA-C-Fe, SA-C-Fe(C))
性质 | SA-Fe | SA-C-Fe | SA-C-Fe(C) |
---|---|---|---|
比表面积/(m2/g) | 85.58 | 756.25 | 987.55 |
平均孔径/nm | 7.30 | 3.48 | 3.41 |
总孔容/(cm3/g) | 0.16 | 0.66 | 0.84 |
Element | W/% | A/% |
---|---|---|
C | 11.56 | 28.22 |
O | 14.57 | 26.70 |
Cl | 20.88 | 17.26 |
Fe | 52.99 | 27.82 |
表4 SA-Fe放大50倍外表面的EDS能谱分析
Table 4 EDS energy spectrum analysis of the outer surface of SA-Fe magnified 50 times
Element | W/% | A/% |
---|---|---|
C | 11.56 | 28.22 |
O | 14.57 | 26.70 |
Cl | 20.88 | 17.26 |
Fe | 52.99 | 27.82 |
1 | Hu R. Pollution control and remediation of rural water resource based on urbanization perspective[J]. Environmental Technology & Innovation, 2020, 20: 101136. |
2 | Mayer B K, Baker L A, Boyer T H, et al. Total value of phosphorus recovery[J]. Environmental Science & Technology, 2016, 50(13): 6606-6620. |
3 | 周贤杰. 三峡库区次级河流富营养化模型统计与藻类生长的试验研究[D]. 重庆: 重庆大学, 2008. |
Zhou X J. Eutrophication model statistic and algae growth experiment study in tributaries to the Three Gorges reservoir[D]. Chongqing: Chongqing University, 2008. | |
4 | Bashir A, Wang L Y, Deng S Y, et al. Phosphorus release during alkaline treatment of waste activated sludge from wastewater treatment plants with Al salt enhanced phosphorus removal: speciation and mechanism clarification[J]. Science of the Total Environment, 2019, 688: 87-93. |
5 | Peng L H, Dai H L, Wu Y F, et al. A comprehensive review of phosphorus recovery from wastewater by crystallization processes[J]. Chemosphere, 2018, 197: 768-781. |
6 | 黄宣旗. 复合纳米吸附剂的制备及污水磷回收性能[D]. 广州: 暨南大学, 2020. |
Huang X Q. Preparation of composite nano-adsorbents for phosphorus recovery from wastewater[D]. Guangzhou: Jinan University, 2020. | |
7 | Amann A, Zoboli O, Krampe J, et al. Environmental impacts of phosphorus recovery from municipal wastewater[J]. Resources, Conservation and Recycling, 2018, 130: 127-139. |
8 | Yin Z C, Chen Q F, Zhao C S, et al. A new approach to removing and recovering phosphorus from livestock wastewater using dolomite[J]. Chemosphere, 2020, 255: 127005. |
9 | He S M, McMahon K D. Microbiology of ‘Candidatus accumulibacter’ in activated sludge[J]. Microbial Biotechnology, 2011, 4(5): 603-619. |
10 | Li Y, Nan X L, Li D Y, et al. Advances in the treatment of phosphorus-containing wastewater[J]. IOP Conference Series: Earth and Environmental Science, 2021, 647(1): 012163. |
21 | Yi X F, Sun F L, Han Z H, et al. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu(Ⅱ) and U (Ⅵ) removal[J]. Ecotoxicology and Environmental Safety, 2018, 158: 309-318. |
22 | Bai C L, Wang L, Zhu Z Y. Adsorption of Cr(Ⅲ) and Pb(Ⅱ) by graphene oxide/alginate hydrogel membrane: characterization, adsorption kinetics, isotherm and thermodynamics studies[J]. International Journal of Biological Macromolecules, 2020, 147: 898-910. |
11 | 张博, 马平安, 邓蕾, 等. 膜分离技术在水处理中的研究热点与进展[J]. 安徽化工, 2020, 46(5): 24-26, 29. |
Zhang B, Ma P A, Deng L, et al. The study focus and development of membrane separation technology for water treatment[J]. Anhui Chemical Industry, 2020, 46(5): 24-26, 29. | |
12 | 喻淑鑫. 浅谈膜分离技术及其在水处理中的应用[J]. 河北农机, 2019(8): 49. |
Yu S X. Elementary introduction to membrane separation technology and its application in water treatment[J]. Hebei Agricultural Machinery, 2019(8): 49. | |
13 | 万琼, 贾真真, 喻盈捷, 等. 吸附除磷剂的研究进展[J]. 当代化工研究, 2020(21): 4-6. |
Wan Q, Jia Z Z, Yu Y J, et al. Research progress in phosphorus-removal absorbents[J]. Modern Chemical Research, 2020(21): 4-6. | |
14 | 符明夏, 张艺, 赵秀志, 等. 海藻酸钠调控碳酸钙晶体研究综述[J]. 内江科技, 2017, 38(4): 88-89. |
Fu M X, Zhang Y, Zhao X Z, et al. A review of studies on sodium alginate regulating calcium carbonate crystals[J]. Neijiang Science & Technology, 2017, 38(4): 88-89. | |
15 | 柴雍, 王鸿儒, 姚一军, 等. 海藻酸钠改性材料的研究进展[J]. 现代化工, 2018, 38(7): 57-61, 63. |
Chai Y, Wang H R, Yao Y J, et al. Research progress on modified sodium alginate materials[J]. Modern Chemical Industry, 2018, 38(7): 57-61, 63. | |
23 | Shen W, An Q D, Xiao Z Y, et al. Alginate modified graphitic carbon nitride composite hydrogels for efficient removal of Pb(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) from water[J]. International Journal of Biological Macromolecules, 2020, 148: 1298-1306. |
24 | Bahrami F, Yu X F, Zou Y C, et al. Impregnated calcium-alginate beads as floating reactors for the remediation of nitrate-contaminated groundwater[J]. Chemical Engineering Journal, 2020, 382: 122774. |
25 | Wang L, Wang Y J, Ma F, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review[J]. Science of the Total Environment, 2019, 668: 1298-1309. |
26 | Kyzas G Z, Bomis G, Kosheleva R I, et al. Nanobubbles effect on heavy metal ions adsorption by activated carbon[J]. Chemical Engineering Journal, 2019, 356: 91-97. |
27 | Huang D, Wu J Z, Wang L, et al. Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water[J]. Chemical Engineering Journal, 2019, 358: 1399-1409. |
28 | Wu Y, Zhang J, Liu Z, et al. Removal of ammonia nitrogen by biochar-alginate-jointly immobilized Chlorella vulgaris [J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2863-2869. |
29 | 刘立. 生物炭基吸附剂的制备及其对Pb2+和Cu2+的吸附性能研究[D]. 广州: 广州大学, 2019. |
Liu L. Preparation and adsorption performance of biochar-based adsorbent for Pb2+ and Cu2+ removal[D]. Guangzhou: Guangzhou University, 2019. | |
30 | 何恬叶. 稳定化纳米零价铁生物炭对水中重金属的吸附[D]. 成都: 成都理工大学, 2019. |
He T Y. Adsorption of heavy metals from aqueous using stabilized nanoscale zero-valent iron biochar[D]. Chengdu: Chengdu University of Technology, 2019. | |
31 | 于长江, 董心雨, 王苗, 等. 海藻酸钙/生物炭复合材料的制备及其对Pb(Ⅱ)的吸附性能和机制[J]. 环境科学, 2018, 39(8): 3719-3728. |
Yu C J, Dong X Y, Wang M, et al. Preparation and characterization of a calcium alginate/biochar microsphere and its adsorption characteristics and mechanisms for Pb(Ⅱ)[J]. Environmental Science, 2018, 39(8): 3719-3728. | |
32 | 杨珊. 磷酸对pH振荡的影响[J]. 应用化工, 2015, 44(10): 1840-1843. |
Yang S. Effect of phosphoric acid on pH oscillation[J]. Applied Chemical Industry, 2015, 44(10): 1840-1843. | |
16 | Yuan L, Wu Y, Gu Q S, et al. Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin[J]. International Journal of Biological Macromolecules, 2017, 96: 569-577. |
17 | Russo R, Malinconico M, Santagata G. Effect of cross-linking with calcium ions on the physical properties of alginate films[J]. Biomacromolecules, 2007, 8(10): 3193-3197. |
18 | 孙朝辉. 基于海藻酸钠复合改性吸附材料的制备及对重金属离子的吸附研究[D]. 西安: 长安大学, 2019. |
Sun Z H. Preparation of adsorption material based on sodium alginate composite and adsorption of heavy metal ions[D]. Xi’an: Chang’an University, 2019. | |
33 | Gu S, Fu B T, Ahn J W, et al. Mechanism for phosphorus removal from wastewater with fly ash of municipal solid waste incineration, Seoul, Korea[J]. Journal of Cleaner Production, 2021, 280: 124430. |
34 | Fu H Y, Yang Y X, Zhu R L, et al. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite[J]. Journal of Colloid and Interface Science, 2018, 530: 704-713. |
35 | Shi W M, Fu Y W, Jiang W, et al. Enhanced phosphate removal by zeolite loaded with Mg-Al-La ternary (hydr)oxides from aqueous solutions: performance and mechanism[J]. Chemical Engineering Journal, 2019, 357: 33-44. |
36 | Fang L P, Liu R, Li J, et al. Magnetite/lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles[J]. Water Research, 2018, 130: 243-254. |
19 | 赵希强, 宋占龙, 王涛, 等. 微波技术用于热解的研究进展[J]. 化工进展, 2008, 27(12): 1873-1877, 1881. |
Zhao X Q, Song Z L, Wang T, et al. Progress of pyrolysis using microwave heating technique[J]. Chemical Industry and Engineering Progress, 2008, 27(12): 1873-1877, 1881. | |
20 | 辛子扬, 葛立超, 冯红翠, 等. 生物质微波热解利用技术综述[J]. 热力发电, 2019, 48(7): 19-31. |
Xin Z Y, Ge L C, Feng H C, et al. Application of microwave technology in biomass pyrolysis: a review[J]. Thermal Power Generation, 2019, 48(7): 19-31. | |
37 | Qiu H, Liang C, Yu J H, et al. Preferable phosphate sequestration by nano-La(Ⅲ) (hydr)oxides modified wheat straw with excellent properties in regeneration[J]. Chemical Engineering Journal, 2017, 315: 345-354. |
38 | 田中科, 王芬, 闫钊. 钢铁废水污泥吸附除磷特性[J]. 中国环境科学, 2021, 41(1): 177-184. |
Tian Z K, Wang F, Yan Z. Phosphorus adsorption characteristics by steel wastewater sludge[J]. China Environmental Science, 2021, 41(1): 177-184. | |
39 | Yang Q, Wang X L, Luo W, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge[J]. Bioresource Technology, 2018, 247: 537-544. |
40 | Li M X, Liu J Y, Xu Y F, et al. Phosphate adsorption on metal oxides and metal hydroxides: a comparative review[J]. Environmental Reviews, 2016, 24(3): 319-332. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[3] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[4] | 姜家豪, 黄笑乐, 任纪云, 朱正荣, 邓磊, 车得福. 生物炭吸附溶液中Pb2+的定性及定量研究[J]. 化工学报, 2023, 74(2): 830-842. |
[5] | 陈冠益, 童图军, 李瑞, 王燕杉, 颜蓓蓓, 李宁, 侯立安. 热解时间对污泥生物炭活化过硫酸盐的影响研究[J]. 化工学报, 2022, 73(5): 2111-2119. |
[6] | 万丽, 梁德青. 一种可生物降解水合物动力学抑制剂的研究[J]. 化工学报, 2022, 73(2): 894-903. |
[7] | 王之豪, 宋欣, 殷亚然, 张先明. 微流控纺丝中凝胶速率对螺旋纤维形貌的调控机制[J]. 化工学报, 2022, 73(11): 5158-5166. |
[8] | 秦坤, 李佳乐, 王章鸿, 张会岩. 富Ca香菇菌渣基生物炭对含磷废水处理性能的研究[J]. 化工学报, 2022, 73(11): 5263-5274. |
[9] | 黄莉婷, 韩昫身, 金艳, 马强, 于建国. 煤化工反渗透浓水的高效降解菌株筛选、鉴定及应用研究[J]. 化工学报, 2021, 72(9): 4881-4891. |
[10] | 王玉,余广炜,江汝清,林佳佳,汪印. 粒径对餐厨沼渣热解制备生物炭中磷和重金属的影响[J]. 化工学报, 2021, 72(10): 5344-5353. |
[11] | 莫官海, 谢水波, 曾涛涛, 刘迎九, 蔡萍莉. 污泥基生物炭处理酸性含U(Ⅵ)废水的效能与机理[J]. 化工学报, 2020, 71(5): 2352-2362. |
[12] | 李安玉, 李双莉, 余碧戈, 马爱英, 周鑫兰, 谢建慧, 蒋艳红, 邓华. 镁浸渍生物炭吸附氨氮和磷:制备优化和吸附机理[J]. 化工学报, 2020, 71(4): 1683-1695. |
[13] | 陈功,武煜翔,卢真保,王炳锋,杨东晓,赵钟兴,黄艳. 苯乙醇和茴香醚在含Fe蚕沙基生物碳材料的储香与释放性能研究[J]. 化工学报, 2020, 71(12): 5628-5635. |
[14] | 张婷婷,刘永军,周成涛,董欣,刘嘉晨. 竹制生物炭负载TiO2-SnO2电化学处理焦化废水[J]. 化工学报, 2020, 71(12): 5793-5801. |
[15] | 禹兴海, 罗齐良, 潘剑, 韩玉琦, 张奇峰. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 596
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 449
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||