化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4881-4891.doi: 10.11949/0438-1157.20210212

• 能源和环境工程 • 上一篇    下一篇

煤化工反渗透浓水的高效降解菌株筛选、鉴定及应用研究

黄莉婷1(),韩昫身2(),金艳3,马强4,于建国1()   

  1. 1.华东理工大学资源过程工程教育部工程研究中心,上海 200237
    2.华东理工大学国家盐湖资源 综合利用工程技术研究中心,上海 200237
    3.苏州聚智同创环保科技有限公司,江苏 常熟 215513
    4.中国石油川庆钻探工程有限公司页岩气勘探开发项目经理部,四川 成都 610051
  • 收稿日期:2021-02-03 修回日期:2021-06-06 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 韩昫身,于建国 E-mail:hliting2020@163.com;xushen.han@ecust.edu.cn;jgyu@ecust.edu.cn
  • 作者简介:黄莉婷(1996—),女,硕士研究生,hliting2020@163.com
  • 基金资助:
    上海市青年科技英才扬帆计划项目(20YF1409500);中央高校基本科研业务费专项资金(50321022017008)

Isolation, identification and application of highly efficient halotolerant strains for coal chemical reverse osmosis concentrate treatment

Liting HUANG1(),Xushen HAN2(),Yan JIN3,Qiang MA4,Jianguo YU1()   

  1. 1.Engineering Research Center of Resource Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
    2.National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China
    3.Suzhou Juzhi Tongchuang Environmental Technology Co. , Ltd. , Changshu 215513, Jiangsu, China
    4.Shale Gas Exploration and Development Project Manager Department, CNPC Chuanqing Drilling Engineering Co. , Ltd. , Chengdu 610051, Sichuan, China
  • Received:2021-02-03 Revised:2021-06-06 Published:2021-09-05 Online:2021-09-05
  • Contact: Xushen HAN,Jianguo YU E-mail:hliting2020@163.com;xushen.han@ecust.edu.cn;jgyu@ecust.edu.cn

摘要:

一般煤化工废水经过多级氧化处理后,反渗透淡水回用、浓水经蒸发产生难处理的“危废”,有机物的存在对“危废”循环利用有显著制约作用。以煤化工反渗透浓水为底物(TOC为233.4 mg/L,TDS为50.9 g/L,BOD5/COD仅为0.05),从不同菌源中筛选得到9株高效耐盐菌,经16S rDNA测序表明,这些菌株属于假单胞菌属、芽孢杆菌属及嗜盐单胞菌属。将9株耐盐菌配制成复合耐盐菌剂连续式运行处理实际废水,有机物去除率可达30%,为进一步提高去除率,经臭氧氧化预处理,有机物去除率可提高至40%,达到国内外较先进水平。根据气质联用分析,臭氧氧化预处理会破坏废水中环状物质的结构,提高复合耐盐菌剂对难降解有机物的去除效果。本研究为煤化工反渗透浓水中有机物的生物降解提供了可行性方案。

关键词: 废水, 降解, 污染, 煤化工废水, 反渗透浓水, 嗜(耐)盐菌, 复合耐盐菌剂, 臭氧氧化

Abstract:

Coal chemical industry plays an important role in national economy of China. Currently, coal chemical wastewater is usually treated by chemical oxidation and biochemical oxidation to remove the organic matter, followed by reverse osmosis (RO) to get the recycled fresh water. The concentrate is subsequently evaporated, while the generated mixture of salts and organic matter belongs to hazardous waste, which is costly to be treated and not environmentally friendly. With the increasing requirements of environmental protection, fractional crystallization has been developed to solve this problem. However, organic matter significantly inhibits salt crystallization. Consequently, there is considerable interest in removing the organic matter of coal chemical RO concentrate efficiently and economically. The cost of advanced oxidation treatment is higher, while it is hard to conduct microbiological treatment in such wastewater since it is weak in high salinity and concentrated toxic compounds. In the work reported here, coal chemical RO concentrate contained 50.9 g/L of TDS and 233.4 mg/L of TOC (total organic carbon) with BOD5/COD of 0.05. Nine halotolerant bacteria strains were successfully isolated from different sludge and soil, which belonged to Pseudomonas sp., Bacillus sp., and Halomonas sp.by16S rDNA identification. Meanwhile, the research has studied physiological and biochemical characteristics of these nine strains. The results showed that the strains can grow well at 0—15% salinity. Ozone oxidation pretreatment and halotolerant bacteria preparation (mixture of nine strains) treatment was used to treat the wastewater. After one month's continuous operation, the TOC removal ratio reached 40%, reflecting an advanced level compared to the previous study. According to GC-MS (gas chromatography-mass spectrometer) analysis, ozone oxidation can destroy the cyclic structure of organic matter and improve the TOC removal ratio of subsequent halotolerant bacteria preparation. This work provided an effective approach to degrade coal chemical reverse osmosis concentrate by microbial method.

Key words: waste water, degradation, pollution, coal chemical wastewater, reverse osmosis concentrate, halophilic and halotolerant bacteria, halotolerant bacteria preparation, ozone oxidation

中图分类号: 

  • X 172

图1

煤化工反渗透浓水的来源"

图2

复合耐盐菌剂处理废水"

图3

耐盐菌对TOC的去除效果(blank—空白对照组;L-HBP—9株菌等比例复配制备的菌剂)"

表1

耐盐菌菌种鉴定"

菌株编号相似菌株相似度/%序列号
L-141Pseudomonas sp. HC2-4100.00JF312947.1
L-142Pseudomonas sp. strain P0u2599.92MK737101.1
L-143Bacillus sp. (in: Bacteria) strain CY1TSA799.79MH974115.1
L-144Halomonas alkaliphila X3100.00CP024811.1
L-145Bacillus altitudinis strain HQ-51-Ba100.00CP040747.1
L-146Bacillus altitudinis strain HQ-51-Ba99.85CP040747.1
L-147Bacillus sp. (in: Bacteria) strain CY1TSA7100.00MH974115.1
L-275Bacillus flexus strain HDB-299.72MK178593.1
L-276Bacillus altitudinis strain NPB34b100.00MT598007.1

图4

耐盐菌株16S rDNA系统发育树"

表2

耐盐菌株的生理生化特性"

菌株编号革兰染色氧化酶触酶淀粉酶脲酶吲哚酪素水解产H2S明胶水解好氧/厌氧
L-141---++-+--+
L-142+---+-+--+
L-143+---+-+--+
L-144+---+-+--+
L-145+---+-+--+
L-146+---+-+--+
L-147+---+-+--+
L-275+---+-+--+
L-276+--++-+--+

图5

不同盐度条件下耐盐菌的耐盐特性"

图6

复合耐盐菌剂处理煤化工反渗透浓水"

图7

臭氧氧化和复合耐盐菌剂降解废水联合工艺"

表3

废水中有机物GC-MS分析"

煤化工反渗透浓水复合耐盐菌剂法产水臭氧预处理产水臭氧预处理和复合耐盐菌剂法 联合工艺产水
有机物成分占比/%有机物成分占比/%有机物成分占比/%有机物成分占比/%
乙二醇单丁醚2.8四氧杂环己烷4.1乙醇8.55-乙酰氧基-6(1,2-环氧丙基)-5,6二氢吡喃-2-酮4.5
四氧杂环己烷0.7
四氧杂环己烷1.91-亚硝基-2-哌啶甲酸3.1二氯异乙醚40.91-甲基-环戊烷羧酸4.9
1-亚硝基-2-哌啶甲酸3.9环己胺2.53-己烯-2,5-二醇5.53-乙基-2-甲基-1-戊烯5.9
硫代氨基甲酸,N-正环己基S-(2,5-二羟基苯基)2.75-甲基-4-乙烯-3-酮4.52,3-双环呋喃4.32,3-双环呋喃5.7
2,2-甲基-3-乙烯6.52,3-双环呋喃4.93-乙基-4-甲基-2-戊烯3.92,4-二叔丁基苯酚9.9
2,3-双环呋喃9.3乙基环己烷1.83-乙基-2-戊烯1.4
5,5-二甲基-3-环己烯-1-醇23.16-exo-vinyl-5-endo-norbornenol25.9氯丙醇0.6
对二氮杂环2.42,6-环辛二烯-1-醇2.1二十烷0.4
2,4-二叔丁基苯酚2.82,4-二叔丁基苯酚0.7
二十六烷0.8
46 任明, 孙淑英, 金艳, 等. 催化臭氧氧化法处理煤化工高盐废水[J]. 环境工程, 2018, 36(8): 54-59.
Ren M, Sun S Y, Jin Y, et al. Treatment of high-salt wastewater from coal chemical industry by catalytic ozone oxidation[J]. Environmental Engineering, 2018, 36(8): 54-59.
47 Fang F, Han H J. Effect of catalytic ozonation coupling with activated carbon adsorption on organic compounds removal treating RO concentrate from coal gasification wastewater[J]. Ozone: Science & Engineering, 2018, 40(4): 275-283.
48 Ji Q H, Tabassum S, Hena S, et al. A review on the coal gasification wastewater treatment technologies: past, present and future outlook[J]. Journal of Cleaner Production, 2016, 126: 38-55.
1 任同伟, 俞彬, 阳春芳, 等. 煤化工高含盐废水资源化处理技术的工程应用研究[J]. 工业水处理, 2019, 39(2): 96-99.
Ren T W, Yu B, Yang C F, et al. Research on the engineering application of the recycling treatment technology of high salinity wastewater in coal chemical industry[J]. Industrial Water Treatment, 2019, 39(2): 96-99.
2 杜松, 金文标, 刘宁, 等. 煤化工高含盐废水有机物的去除研究[J]. 煤炭科学技术, 2019, 47(12): 221-225.
Du S, Jin W B, Liu N, et al. Study on removal of organic matter from high-salt wastewater in coal chemical industry[J]. Coal Science and Technology, 2019, 47(12): 221-225.
3 陈莉荣, 邬东, 谷振超, 等. 煤化工含盐废水的处理技术应用进展[J]. 工业水处理, 2019, 39(12): 12-18.
Chen L R, Wu D, Gu Z C, et al. Technology application on salt-containing wastewater treatment in coal chemical industry[J]. Industrial Water Treatment, 2019, 39(12): 12-18.
4 赵婷婷, 王真, 郑雯倩. 探讨煤化工废水的处理技术及应用[J]. 中国资源综合利用, 2019, 37(5): 64-66.
Zhao T T, Wang Z, Zheng W Q. Discussion on treatment technology and application of coal chemical wastewater[J]. China Resources Comprehensive Utilization, 2019, 37(5): 64-66.
5 曲风臣. 煤化工废水"零排放"技术要点及存在问题[J]. 化学工业, 2013, 31(Z1): 18-24.
Qu F C. The key technologies and problems of wastewater zero discharge in coal chemical industry[J]. Chemical Industry, 2013, 31(Z1): 18-24.
6 Liu C, Chen X X, Zhang J, et al. Advanced treatment of bio-treated coal chemical wastewater by a novel combination of microbubble catalytic ozonation and biological process[J]. Separation and Purification Technology, 2018, 197: 295-301.
7 Zheng L X, Han X S, Han T, et al. Formulating a fully converged biorefining chain with zero wastewater generation by recycling stillage liquid to dry acid pretreatment operation[J]. Bioresource Technology, 2020, 318: 124077.
8 Bian C, Chen H, Song X F, et al. Metastable zone width and the primary nucleation kinetics for cooling crystallization of NaNO3 from NaCl-NaNO3-H2O system[J]. Journal of Crystal Growth, 2019, 518: 5-13.
9 Bian C, Chen H, Song X F, et al. Effects of organic pollutants on the fractional crystallization of NaNO3 from high-saline wastewater[J]. Journal of Crystal Growth, 2020, 540: 125656.
10 Liu J, Ou H S, Wei C H, et al. Novel multistep physical/chemical and biological integrated system for coking wastewater treatment: technical and economic feasibility[J]. Journal of Water Process Engineering, 2016, 10: 98-103.
11 Huang Y, Hou X L, Liu S T, et al. Correspondence analysis of bio-refractory compounds degradation and microbiological community distribution in anaerobic filter for coking wastewater treatment[J]. Chemical Engineering Journal, 2016, 304: 864-872.
12 Pradhan S, Fan L H, Roddick F A, et al. Impact of salinity on organic matter and nitrogen removal from a municipal wastewater RO concentrate using biologically activated carbon coupled with UV/H2O2[J]. Water Research, 2016, 94: 103-110.
13 Pradhan S, Fan L H, Roddick F A. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment[J]. Chemosphere, 2015, 136: 198-203.
14 Jia S Y, Han Y X, Zhuang H F, et al. Simultaneous removal of organic matter and salt ions from coal gasification wastewater RO concentrate and microorganisms succession in a MBR[J]. Bioresource Technology, 2017, 241: 517-524.
15 Liu R K, Wang Q, Li M, et al. Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR[J]. RSC Advances, 2020, 10(17): 10178-10187.
16 Lan M C, Li M, Liu J, et al. Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system[J]. Bioresource Technology, 2018, 270: 120-128.
17 Liu X D, Wu S J, Zhang D J, et al. Simultaneous pyridine biodegradation and nitrogen removal in an aerobic granular system[J]. Journal of Environmental Sciences, 2018, 67: 318-329.
18 唐婧, 屈姗姗, 傅金祥, 等. 复合菌剂强化处理高盐废水脱氮效果[J]. 环境工程学报, 2015, 9(6): 2699-2705.
Tang J, Qu S S, Fu J X, et al. Efficiency of saline wastewater denitrification by bioaugmentation with composite microbial inoculum[J]. Chinese Journal of Environmental Engineering, 2015, 9(6): 2699-2705.
19 Abou-Elela S I, Kamel M M, Fawzy M E. Biological treatment of saline wastewater using a salt-tolerant microorganism[J]. Desalination, 2010, 250(1): 1-5.
20 Zhuang X L, Han Z, Bai Z H, et al. Progress in decontamination by halophilic microorganisms in saline wastewater and soil[J]. Environmental Pollution, 2010, 158(5): 1119-1126.
21 金艳, 张永红, 宋兴福, 等. 一株降解页岩气采出水耐盐菌的分离鉴定与特性[J]. 华东理工大学学报(自然科学版), 2020, 46(6): 722-729.
Jin Y, Zhang Y H, Song X F, et al. Identification and characteristics of a salt-tolerant bacteria for shale gas produced water treatment[J]. Journal of East China University of Science and Technology, 2020, 46(6): 722-729.
22 金艳, 张永红, 宋兴福, 等. 耐盐菌MBR系统处理页岩气采出水性能及膜污染特性[J]. 华东理工大学学报(自然科学版), 2020, 46(6): 730-736.
Jin Y, Zhang Y H, Song X F, et al. Performance and membrane fouling of produced water from shale gas treated by MBR system with salt-tolerant bacteria[J]. Journal of East China University of Science and Technology, 2020, 46(6): 730-736.
23 Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
24 Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research, 1994, 22(22): 4673-4680.
25 孟凡旭, 吴敏, 张会斌, 等. 阿牙克库木湖嗜盐菌的分离及功能酶的筛选[J]. 浙江大学学报(理学版), 2006, 33(6): 671-675.
Meng F X, Wu M, Zhang H B, et al. Isolation and enzyme screening of halophilesfrom Ayakekum Lake[J]. Journal of Zhejiang University (Science Edition), 2006, 33(6): 671-675.
26 王晓丽, 于建国. 一个甲烷氧化菌株的分离、鉴定及其特性研究[J]. 微生物学通报, 2008, 35(6): 934-938.
Wang X L, Yu J G. Isolation, identification and characterization of a methanotrophic strain[J]. Microbiology, 2008, 35(6): 934-938.
27 张浩, 刘玉香, 呼婷婷, 等. 一株苯胺降解菌的分离及其降解特性[J]. 环境工程学报, 2015, 9(12): 6154-6160.
Zhang H, Liu Y X, Hu T T, et al. Isolation and characterization of an aniline-degrading bacterium[J]. Chinese Journal of Environmental Engineering, 2015, 9(12): 6154-6160.
28 高廷耀, 顾国维, 周琪. 水污染控制工程[M]. 北京: 高等教育出版社, 2007.
Gao T Y, Gu G W, Zhou Q. Water Pollution Control Engineering [M]. Beijing: Higher Education Press, 2007.
29 Ahmadi M, Ahmadmoazzam M, Saeedi R, et al. Biological treatment of a saline and recalcitrant petrochemical wastewater by using a newly isolated halo-tolerant bacterial consortium in MBBR[J]. Desalination and Water Treatment, 2019, 167: 84-95.
30 Qu J H, Chen X L, Zhou J, et al. Treatment of real sodium saccharin wastewater using multistage contact oxidation reactor and microbial community analysis[J]. Bioresource Technology, 2019, 289: 121714.
31 Yan Y X, Yang J, Zhu Z Y, et al. Enhancing performance evaluation and microbial community analysis of the biofilter for toluene removal by adding polyethylene glycol-600 into the nutrient solution[J]. Bioresource Technology, 2021, 330: 124954.
32 Wang Q, Wu X G, Jiang L H, et al. Effective degradation of di-n-butyl phthalate by reusable, magnetic Fe3O4 nanoparticle-immobilized Pseudomonas sp. W1 and its application in simulation[J]. Chemosphere, 2020, 250: 126339.
33 Wang J L, Zhou J, Wang Y M, et al. Efficient nitrogen removal in a modified sequencing batch biofilm reactor treating hypersaline mustard tuber wastewater: the potential multiple pathways and key microorganisms[J]. Water Research, 2020, 177: 115734.
34 Zerva I, Remmas N, Melidis P, et al. Biotreatment efficiency, hydrolytic potential and bacterial community dynamics in an immobilized cell bioreactor treating caper processing wastewater under highly saline conditions[J]. Bioresource Technology, 2021, 325: 124694.
35 Haddadi A, Shavandi M. Biodegradation of phenol in hypersaline conditions by Halomonas sp strain PH2-2 isolated from saline soil[J]. International Biodeterioration & Biodegradation, 2013, 85: 29-34.
36 Piubeli F, Grossman M J, Fantinatti-Garboggini F, et al. Enhanced reduction of COD and aromatics in petroleum-produced water using indigenous microorganisms and nutrient addition[J]. International Biodeterioration & Biodegradation, 2012, 68: 78-84.
37 Fimlaid K A, Shen A. Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes[J]. Current Opinion in Microbiology, 2015, 24: 88-95.
38 Khanpour-Alikelayeh E, Partovinia A, Talebi A, et al. Investigation of Bacilluslicheniformis in the biodegradation of Iranian heavy crude oil: a two-stage sequential approach containing factor-screening and optimization[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111103.
39 Koops H P, Pommerening-Röser A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species[J]. FEMS Microbiology Ecology, 2001, 37(1): 1-9.
40 Santorelli M, Maurelli L, Pocsfalvi G, et al. Isolation and characterisation of a novel alpha-amylase from the extreme haloarchaeon Haloterrigena turkmenica[J]. International Journal of Biological Macromolecules, 2016, 92: 174-184.
41 Kargi F, Dinçer A R. Saline wastewater treatment by halophile-supplemented activated sludge culture in an aerated rotating biodisc contactor[J]. Enzyme and Microbial Technology, 1998, 22(6): 427-433.
42 Hou M, Li W, Li H, et al. Performance and bacterial characteristics of aerobic granular sludge in response to alternating salinity[J]. International Biodeterioration & Biodegradation, 2019, 142: 211-217.
43 Wang D X, Han Y X, Han H J, et al. Enhanced treatment of Fischer-Tropsch wastewater using up-flow anaerobic sludge blanket system coupled with micro-electrolysis cell: a pilot scale study[J]. Bioresource Technology, 2017, 238: 333-342.
44 俞汉青, 郑煜铭, 顾国维, 等. 活性污泥对四种非极性有机物的吸附[J]. 环境科学学报, 2003, 23(4): 546-548.
Yu H Q, Zheng Y M, Gu G W, et al. Sorption of four non-poplar organic compounds by activated sludge[J]. Acta Scientiae Circumstantiae, 2003, 23(4): 546-548.
45 Álvarez P M, Beltrán F J, Pocostales J P, et al. Preparation and structural characterization of Co/Al2O3 catalysts for the ozonation of pyruvic acid[J]. Applied Catalysis B: Environmental, 2007, 72(3/4): 322-330.
[1] 黄仕元, 邓简, 袁瀚钦, 王国华, 吴兴良. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056.
[2] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[3] 赵希强, 张健, 孙爽, 王文龙, 毛岩鹏, 孙静, 刘景龙, 宋占龙. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173.
[4] 贾艳萍, 丁雪, 刚健, 佟泽为, 张海丰, 张兰河. Mn强化Fe/C微电解工艺条件优化及降解油墨废水机理[J]. 化工学报, 2022, 73(5): 2183-2193.
[5] 孙敏, 贾辉, 秦卿雯, 王琦, 郭子楠, 罗艳茹, 王捷. 电阻抗成像原位在线监测超滤膜污染行为研究[J]. 化工学报, 2022, 73(4): 1754-1762.
[6] 张逸伟, 唐海荣, 何勇, 朱燕群, 王智化. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4): 1732-1742.
[7] 韩雪, 高生旺, 王国英, 夏训峰. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753.
[8] 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402.
[9] 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
[10] 万丽, 梁德青. 一种可生物降解水合物动力学抑制剂的研究[J]. 化工学报, 2022, 73(2): 894-903.
[11] 刘轩, 苏银皎, 滕阳, 张锴, 王鹏程, 李丽锋, 李圳. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932.
[12] 朱振林, 王松林, 姜冰雪, 李家旭, 邓维, 吴海强, 杨轩, 刘平伟, 王文俊. 聚酯生物降解及评价方法研究[J]. 化工学报, 2022, 73(1): 110-121.
[13] 付鹏波,田金乙,吕文杰,黄渊,刘毅,卢浩,杨强,修光利,汪华林. 物理法水处理技术[J]. 化工学报, 2022, 73(1): 59-72.
[14] 贾艳萍, 单晓倩, 宋祥飞, 佟泽为, 张健, 张兰河. 响应面法优化餐饮废水混凝工艺研究[J]. 化工学报, 2021, 72(9): 4931-4940.
[15] 张杰, 刘壮, 巨晓洁, 谢锐, 汪伟, 褚良银. 层状Mg/Al氢氧化物/聚乙烯醇复合膜的制备及染料截留性能的研究[J]. 化工学报, 2021, 72(9): 4941-4949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!