化工学报 ›› 2022, Vol. 73 ›› Issue (11): 5263-5274.DOI: 10.11949/0438-1157.20220916
• 生物质与有机固废热化学转化专栏 • 上一篇
收稿日期:
2022-06-29
修回日期:
2022-08-21
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
王章鸿
作者简介:
秦坤(1996-),男,硕士研究生,2435004756@qq.com
基金资助:
Kun QIN1(), Jiale LI1, Zhanghong WANG1,2(), Huiyan ZHANG2
Received:
2022-06-29
Revised:
2022-08-21
Online:
2022-11-05
Published:
2022-12-06
Contact:
Zhanghong WANG
摘要:
为了寻求食用菌菌渣合理的资源化利用途径和开发绿色、高效的除磷吸附剂,以香菇菌渣(mushroom residue, MR)为原料,将其在800、900和1000℃下碳化制备生物炭后用于含磷废水的处理(MR-800C、MR-900C和MR-1000C)。理化特性分析显示,该生物炭富含K、Na、Ca和Mg等矿物质,尤其是Ca,其含量高达4328.43~4919.38 mmol/kg。Ca在生物炭中主要以CaCO3的形式存在,随着热解温度升高,部分被分解为CaO。另外,生物炭还具有较高的pHpzc(11.86~12.04)、发达的孔隙结构(比表面积为167.56~223.80 m2/g)和丰富的表面官能团(如C
中图分类号:
秦坤, 李佳乐, 王章鸿, 张会岩. 富Ca香菇菌渣基生物炭对含磷废水处理性能的研究[J]. 化工学报, 2022, 73(11): 5263-5274.
Kun QIN, Jiale LI, Zhanghong WANG, Huiyan ZHANG. Biochars derived from Ca-rich mushroom residue for phosphorus-containing wastewater treatment[J]. CIESC Journal, 2022, 73(11): 5263-5274.
项目 | MR-800C | MR-900C | MR-1000C |
---|---|---|---|
pH | 11.98 | 11.95 | 11.83 |
pHpzc | 11.86 | 12.04 | 11.88 |
水分/% | 1.17 | 1.07 | 1.04 |
灰分/% | 55.03 | 54.82 | 60.34 |
可燃分/% | 43.80 | 44.11 | 38.62 |
K/(mmol/kg) | 762.34 | 650.87 | 738.43 |
Na/(mmol/kg) | 136.44 | 145.56 | 167.98 |
Ca/(mmol/kg) | 4328.43 | 4576.84 | 4919.38 |
Mg/(mmol/kg) | 488.46 | 495.87 | 496.76 |
Fe/(mmol/kg) | 123.24 | 138.43 | 164.87 |
Ni/(mmol/kg) | 11.45 | 10.76 | 12.65 |
Pb/(mmol/kg) | 0.65 | 0.95 | 0.84 |
Cd/(mmol/kg) | 0.12 | 0.42 | 0.46 |
表1 生物炭的工业分析及矿物组分分析
Table 1 Proximate analysis and minerals of biochars
项目 | MR-800C | MR-900C | MR-1000C |
---|---|---|---|
pH | 11.98 | 11.95 | 11.83 |
pHpzc | 11.86 | 12.04 | 11.88 |
水分/% | 1.17 | 1.07 | 1.04 |
灰分/% | 55.03 | 54.82 | 60.34 |
可燃分/% | 43.80 | 44.11 | 38.62 |
K/(mmol/kg) | 762.34 | 650.87 | 738.43 |
Na/(mmol/kg) | 136.44 | 145.56 | 167.98 |
Ca/(mmol/kg) | 4328.43 | 4576.84 | 4919.38 |
Mg/(mmol/kg) | 488.46 | 495.87 | 496.76 |
Fe/(mmol/kg) | 123.24 | 138.43 | 164.87 |
Ni/(mmol/kg) | 11.45 | 10.76 | 12.65 |
Pb/(mmol/kg) | 0.65 | 0.95 | 0.84 |
Cd/(mmol/kg) | 0.12 | 0.42 | 0.46 |
样品 | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|
Qm/(mg/g) | KL/(L/mg) | R2 | Kf/(mg(1-n)·L n /g) | n | R2 | |
MR-800C | 104.17 | 0.01 | 0.926 | 25.73 | 5.55 | 0.840 |
MR-900C | 121.95 | 0.01 | 0.903 | 34.42 | 6.74 | 0.792 |
MR-1000C | 128.21 | 0.01 | 0.891 | 37.39 | 6.98 | 0.803 |
表 2 吸附等温线参数
Table 2 Isotherm parameters of phosphate adsorption by biochars derived from adsorption isotherm models
样品 | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|
Qm/(mg/g) | KL/(L/mg) | R2 | Kf/(mg(1-n)·L n /g) | n | R2 | |
MR-800C | 104.17 | 0.01 | 0.926 | 25.73 | 5.55 | 0.840 |
MR-900C | 121.95 | 0.01 | 0.903 | 34.42 | 6.74 | 0.792 |
MR-1000C | 128.21 | 0.01 | 0.891 | 37.39 | 6.98 | 0.803 |
样品 | qe,exp/(mg/g) | 准一级动力学模型 | 准二级动力学模型 | ||||
---|---|---|---|---|---|---|---|
k1/(1/h) | qe/(mg/g) | R2 | k2/(g/(mg·h)) | qe/(mg/g) | R2 | ||
MR-800C | 40.58 | 8.31 | 2.04 | 0.237 | 145.08 | 39.81 | 0.998 |
MR-900C | 48.90 | 9.90 | 2.01 | 0.524 | 5.70 | 49.16 | 0.996 |
MR-1000C | 48.69 | 9.06 | 1.99 | 0.509 | 64.80 | 49.38 | 0.997 |
表 3 吸附动力学参数
Table 3 Kinetic parameters of phosphate adsorption by biochars fitting with adsorption kinetic models
样品 | qe,exp/(mg/g) | 准一级动力学模型 | 准二级动力学模型 | ||||
---|---|---|---|---|---|---|---|
k1/(1/h) | qe/(mg/g) | R2 | k2/(g/(mg·h)) | qe/(mg/g) | R2 | ||
MR-800C | 40.58 | 8.31 | 2.04 | 0.237 | 145.08 | 39.81 | 0.998 |
MR-900C | 48.90 | 9.90 | 2.01 | 0.524 | 5.70 | 49.16 | 0.996 |
MR-1000C | 48.69 | 9.06 | 1.99 | 0.509 | 64.80 | 49.38 | 0.997 |
样品 | ΔG0/(kJ/mol) | ΔH0/(kJ/mol) | ΔS0/(J/(mol·K)) | |||
---|---|---|---|---|---|---|
288 K | 298 K | 308 K | 318 K | |||
MR-800C | -5.1 | -5.54 | -6.34 | -6.65 | 10.58 | 54.42 |
MR-900C | -5.77 | -6.47 | -7.16 | -7.61 | 12.16 | 62.42 |
MR-1000C | -5.9 | -6.46 | -7.09 | -7.67 | 11.18 | 59.27 |
表4 吸附热力学参数
Table 4 Thermodynamic parameters of phosphate adsorption by biochars
样品 | ΔG0/(kJ/mol) | ΔH0/(kJ/mol) | ΔS0/(J/(mol·K)) | |||
---|---|---|---|---|---|---|
288 K | 298 K | 308 K | 318 K | |||
MR-800C | -5.1 | -5.54 | -6.34 | -6.65 | 10.58 | 54.42 |
MR-900C | -5.77 | -6.47 | -7.16 | -7.61 | 12.16 | 62.42 |
MR-1000C | -5.9 | -6.46 | -7.09 | -7.67 | 11.18 | 59.27 |
1 | Sewu D D, Boakye P, Jung H, et al. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica [J]. Bioresource Technology, 2017, 244: 1142-1149. |
2 | 中商产业研究院. 2021年食用菌行业市场现状大数据分析[EB/OL].[2021-09-17]. . |
China Business Industry Research Institute. Big data analysis on the current market situation of edible fungi industry in 2021[EB/OL]. [2021-09-17]. . | |
3 | Zhang G, Liu N, Luo Y, et al. Efficient removal of Cu(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from aqueous solutions by a mineral-rich biochar derived from a spent mushroom (Agaricus bisporus) substrate[J]. Materials (Basel, Switzerland), 2020, 14(1): E35. |
4 | Kulshreshtha S. Removal of pollutants using spent mushrooms substrates[J]. Environmental Chemistry Letters, 2019, 17(2): 833-847. |
5 | Leong Y K, Ma T W, Chang J S, et al. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): a review[J]. Bioresource Technology, 2022, 344: 126157. |
6 | Mohd Hanafi F H, Rezania S, Mat Taib S, et al. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview[J]. Journal of Material Cycles and Waste Management, 2018, 20(3): 1383-1396. |
7 | Perera M K, Englehardt J D, Dvorak A C. Technologies for recovering nutrients from wastewater: a critical review[J]. Environmental Engineering Science, 2019, 36(5): 511-529. |
8 | Wang Z H, Shen D K, Shen F, et al. Phosphate adsorption on lanthanum loaded biochar[J]. Chemosphere, 2016, 150: 1-7. |
9 | Kumar P S, Korving L, van Loosdrecht M C M, et al. Adsorption as a technology to achieve ultra-low concentrations of phosphate: research gaps and economic analysis[J]. Water Research X, 2019, 4: 100029. |
10 | Dai H L, Sun Y, Wan D, et al. Simultaneous denitrification and phosphorus removal: a review on the functional strains and activated sludge processes[J]. Science of the Total Environment, 2022, 835: 155409. |
11 | Yue X J, Zhang T, Yang D Y, et al. Direct separation of phosphate under highly acidic conditions using MnO2@CeO2 nanowires membrane[J]. Chemical Engineering and Processing - Process Intensification, 2022, 177: 108986. |
12 | Wang J L, Wang S Z. Preparation, modification and environmental application of biochar: a review[J]. Journal of Cleaner Production, 2019, 227: 1002-1022. |
13 | Fahmy T Y A, Fahmy Y, Mobarak F, et al. Biomass pyrolysis: past, present, and future[J]. Environment, Development and Sustainability, 2020, 22(1): 17-32. |
14 | Kwon G, Bhatnagar A, Wang H L, et al. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar[J]. Journal of Hazardous Materials, 2020, 400: 123242. |
15 | 赵希强, 张健, 孙爽, 等. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173. |
Zhao X Q, Zhang J, Sun S, et al. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater[J]. CIESC Journal, 2022, 73(5): 2158-2173. | |
16 | 李安玉, 李双莉, 余碧戈, 等. 镁浸渍生物炭吸附氨氮和磷: 制备优化和吸附机理[J]. 化工学报, 2020, 71(4): 1683-1695. |
Li A Y, Li S L, Yu B G, et al. Adsorption of ammonia nitrogen and phosphorus by magnesium impregnated biochar: preparation optimization and adsorption mechanism[J]. CIESC Journal, 2020, 71(4): 1683-1695. | |
17 | Zhao Y Q, Yang H, Xia S B, et al. Removal of ammonia nitrogen, nitrate, and phosphate from aqueous solution using biochar derived from Thalia dealbata Fraser: effect of carbonization temperature[J]. Environmental Science and Pollution Research, 2022, 29: 57773-57789. |
18 | Jung K W, Kim K, Jeong T U, et al. Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots)[J]. Bioresource Technology, 2016, 200: 1024-1028. |
19 | Hale S E, Alling V, Martinsen V, et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars[J]. Chemosphere, 2013, 91(11): 1612-1619. |
20 | Liang J S, Ye J P, Shi C, et al. Pyrolysis temperature regulates sludge-derived biochar production, phosphate adsorption and phosphate retention in soil[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107744. |
21 | Wang Z H, Guo H Y, Shen F, et al. Biochar produced from oak sawdust by lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH 4 + ), nitrate (NO 3 - ), and phosphate (PO 4 3 - )[J]. Chemosphere, 2015, 119: 646-653. |
22 | He Q S, Li X F, Ren Y P. Analysis of the simultaneous adsorption mechanism of ammonium and phosphate on magnesium-modified biochar and the slow release effect of fertiliser[J]. Biochar, 2022, 4(1): 1-16. |
23 | Yin Q Q, Liu M T, Ren H P. Removal of ammonium and phosphate from water by Mg-modified biochar: influence of Mg pretreatment and pyrolysis temperature[J]. Bioresources, 2019, 14: 6203-6218. |
24 | Lou K Y, Rajapaksha A U, Ok Y S, et al. Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions[J]. Chemical Speciation & Bioavailability, 2016, 28(1/2/3/4): 42-50. |
25 | Yao Y, Gao B, Inyang M, et al. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 501-507. |
26 | Yang G, Wang Z H, Xian Q M, et al. Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment[J]. RSC Advances, 2015, 5(50): 40117-40125. |
27 | Alhujaily A, Mao Y Z, Zhang J L, et al. Facile fabrication of Mg-Fe-biochar adsorbent derived from spent mushroom waste for phosphate removal[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 117: 75-85. |
28 | Dong K Y, Xiang X M, Zhou J J, et al. Efficient fertilizer production from low phosphate water using in situ-formed vaterite/calcite calcium carbonate composite microspheres[J]. Science of The Total Environment, 2022, 822: 153620. |
29 | Cao H L, Wu X S, Syed-Hassan S S A, et al. Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell[J]. Bioresource Technology, 2020, 318: 124063. |
30 | Wang Z J, Miao R R, Ning P, et al. From wastes to functions: a paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal[J]. Journal of Colloid and Interface Science, 2021, 593: 434-446. |
31 | Wang Z H, Shen D K, Shen F, et al. Equilibrium, kinetics and thermodynamics of cadmium ions (Cd2+) removal from aqueous solution using earthworm manure-derived carbon materials[J]. Journal of Molecular Liquids, 2017, 241: 612-621. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[7] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[8] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[9] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[10] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[11] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[12] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[13] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[14] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[15] | 蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||