1 |
Zhang Q F , Uchaker E , Candelaria S L , et al . Nanomaterials for energy conversion and storage[J]. Chem. Soc. Rev., 2013, 42(7): 3127-3171.
|
2 |
刘明贤, 缪灵, 陆文静, 等 . 多孔碳材料的设计合成及其在能源存储与转换领域中的应用[J]. 科学通报, 2017, 62(6): 590-605.
|
|
Liu M X , Miao L , Lu W J , et al . Porous carbon materials: design, synthesis and applications in energy storage and conversion devices[J]. Chin. Sci. Bull., 2017, 62(6): 590-605.
|
3 |
Chen X L , Qiu L B , Peng H S , et al . Novel electric double-layer capacitor with a coaxial fiber structure[J]. Adv. Mater., 2013, 25(44): 6436-6441.
|
4 |
Beidaghi M , Gogotsi Y . Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors[J]. Energy & Environ. Sci., 2014, 7(3): 867-884.
|
5 |
Bae J , Song M K , Park Y J , et al . Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angew. Chem. Int. Ed., 2011, 50(7): 1683-1687.
|
6 |
Yan J , Qian W , Tong W , et al . Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Adv. Energy. Mater., 2014, 4(4): 1300816.
|
7 |
Cheng Y W , Zhang H B , Lu S T , et al . Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes[J]. Nanoscale, 2013, 5(3): 1067-1073.
|
8 |
Kötz R , Carlen M . Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45: 2483-2498.
|
9 |
Wang Y G , Song Y F , Xia Y Y . Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chem. Soc. Rev., 2016, 45(21): 5925-5950.
|
10 |
Conway B E , Pell W G . Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices[J]. J.Solid.State.Electr., 2003, 7(9): 637-644.
|
11 |
Sharma P , Bhatti T S . A review on electrochemical double-layer capacitors[J]. Energy. Convers. Manage, 2010, 51(12): 2901-2912.
|
12 |
Lu Q , Chen J G , Xiao J Q . Nanostructured electrodes for high-performance pseudocapacitors[J]. Angew. Chem. Int. Ed., 2013, 52(7): 1882-1889.
|
13 |
Liu Q , Nayfeh M H , Yau S T . Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes[J]. J.Power. Sources, 2010, 195(21): 7480-7483.
|
14 |
Lv T , Yao Y , Li N , et al .Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes[J]. Nano Today, 2016, 11(5): 644-660.
|
15 |
Meng C Z , Liu C H , Chen L Z , et al . Highly flexible and all-solid-state paper-like polymer supercapacitors[J]. Nano Lett., 2010, 10(40): 25-4031.
|
16 |
李宁, 陈涛 . 石墨烯基电极材料在柔性全固态超级电容器中的研究进展[J]. 应用化学, 2018, 35(3): 259-271.
|
|
Li N , Chen T . Recent progress on graphene-based flexible all-solid-state supercapacitors[J]. J. Chin. Appl. Chem., 2018, 35 (3): 259-271.
|
17 |
彭旭, 李典奇, 谢毅, 等 . 二维石墨烯和准二维类石墨烯在全固态柔性超级电容器中的应用[J]. 科学通报, 2013, 58(Z2): 2886-2894.
|
|
Peng X , Li D Q , Xie Y , et al . Two-dimensional graphene/quasi-two-dimensional graphene analogues for flexible supercapacitor in all-solid-state[J]. Chin. Sci. Bull., 2013, 58(Z2): 2886-2894.
|
18 |
朱红艳, 赵建国, 庞明俊, 等 . 石墨烯/δ-MnO2复合材料的制备及其超级电容器性能[J]. 化工学报, 2017, 68(12): 4824-4832.
|
|
Zhu H Y , Zhao J G , Pang M J , et al . Preparation of graphene/δ-MnO2 composites and supercapacitor performance[J]. CIESC Journal, 2017, 68(12): 4824-4832.
|
19 |
Cui Y , Chai J , Du H , et al . Facile and reliable in situ polymerization of poly(ethyl cyanoacrylate)-based polymer electrolytes toward flexible lithium batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 8737-8741.
|
20 |
Cheng X , Jian P , Yang Z , et al . Gel polymer electrolytes for electrochemical energy storage[J]. Adv. Energy Mater., 2018, 8(7): 1702184.
|
21 |
Arya A , Sharma A L . Polymer electrolytes for lithium ion batteries: a critical study[J]. Ionics, 2017, 23(3): 497-540.
|
22 |
Dagousset L , Pognon G , Nguyen G T M , et al . Self-standing gel polymer electrolyte for improving supercapacitor thermal and electrochemical stability[J]. J. Power. Sources, 2018, 391(1): 86-93.
|
23 |
Wang Y , Xia Y . Recent progress in supercapacitors: from materials design to system construction[J]. Adv. Mater., 2013, 25(37): 5336-5342.
|
24 |
Hsu Y K , Chen Y C , Lin Y G , et al . High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution[J]. J. Mate. Chem., 2012, 22(8): 3383-3390.
|
25 |
Cui X , Lv R , Sagar R U R , et al . Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor[J]. Electrochimica Acta, 2015, 169: 342-350.
|
26 |
胡立鹃, 吴峰, 彭善枝, 等 . 生物质活性炭的制备及应用进展[J]. 化学通报, 2016, 79(3): 205-212.
|
|
Hu L J , Wu F , Peng S Z , et al . Recent progress in preparation and utilization of biomass-based activated carbons[J]. Chem. Bull., 2016, 79(3): 205-212.
|
27 |
Goldfarb J L , Dou G , Salari M , et al . Biomass-based fuels and activated carbon electrode materials: an integrated approach to green energy systems[J]. ACS Sustain. Chem. Eng., 2017, 5(4): 3046-3054.
|
28 |
Gu X , Wang Y , Chao L , et al . Microporous bamboo biochar for lithium-sulfur batteries[J]. Nano Res., 2015, 8(1): 129-139.
|
29 |
Liu Y , Shi Z , Gao Y , et al . Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes[J]. ACS Appl. Mater. Interfaces, 2016, 8(42): 28283-28290.
|
30 |
Hou J H , Cao C B , Ma J H , et al . Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS Nano, 2015, 9(3): 2556-2564.
|
31 |
Yu P F , Liang Y R , Liu Y L , et al . Rational synthesis of highly porous carbon from waste bagasse for advanced supercapacitor application[J]. ACS Sustain. Chem. Eng., 2018, 6(11): 15325-15332.
|
32 |
Fu P , Hu S , Sun L S , et al . Structural evolution of maize stalk particles during pyrolysis[J]. Bioresource Technol., 2009, 100(5): 4877-4883.
|
33 |
Jia M , Fang W , Xin J , et al . Metal ion-oxytetracycline interactions on maize straw biochar pyrolyzed at different temperatures[J]. Chem. Eng. J., 2016, 304(15): 934-940.
|
34 |
Yang G , Yun S Z , Min Q , et al . Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes[J]. Carbon, 2013, 51: 52-58.
|
35 |
Wang J , Kaskel S . KOH activation of carbon-based materials for energy storage[J]. J. Mate. Chem., 2012, 22(45): 23710-23725.
|
36 |
Zhu H , Jia Z , Chen Y , et al . Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir[J]. Nano Lett., 2013, 13(7): 3093-3100.
|
37 |
Liang Q H , Ye L , Huang Z H , et al . A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors[J]. Nanoscale, 2014, 6(22): 13831-13837.
|
38 |
Gong Y , Li D , Luo C , et al . Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chem., 2017, 17(19): 4132-4140.
|
39 |
Hao C , Liu D , Shen Z , et al . Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials[J]. Electrochimica Acta, 2015, 180: 241-251.
|
40 |
Qu J Y , Geng C , Lv S Y , et al . Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors[J]. Electrochimica Acta, 2015, 176: 982-988.
|
41 |
Gao S Y , Chen Y L , Fan H , et al . Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors[J]. J. Mater. Chem. A, 2014, 2(10): 3317-3324.
|
42 |
Xu H H , Hu X L , Sun Y M , et al . Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes[J]. Nano Research, 2015, 8(4): 1148-1158.
|
43 |
Chen S , Zhu J W , Wu X , et al . Graphene oxide-MnO2 nanocomposites for supercapacitors[J]. ACS Nano, 2010, 4(5): 6212-6218.
|
44 |
Tiruye G A , Muñoz-Torrero D , Thomas B , et al . Functional porous carbon nanospheres from sustainable precursors for high performance supercapacitors[J]. J.Mater. Chem. A, 2017, 5(31): 16263-16272.
|
45 |
Ma H Y , Li C , Zhang M , et al . Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors[J]. J.
|
|
Mate . Chem. A , 2017, 5(32): 17040-17047.
|
46 |
Wu C H , Deng S X , Wang H , et al . Preparation of novel three-dimensional NiO/ultrathin derived graphene hybrid for supercapacitor applications[J]. ACS Appl. Mate. Interfaces, 2014, 6(2): 1106-1112.
|