化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3590-3600.DOI: 10.11949/0438-1157.20190162

• 材料化学工程与纳米技术 • 上一篇    下一篇

一种生物炭基柔性固态超级电容器的制备及性能研究

禹兴海1,2(),罗齐良1,潘剑2,3,韩玉琦1,4,张奇峰1   

  1. 1. 河西学院柔性复合材料应用基础研究所, 甘肃 张掖 734000
    2. 复旦大学聚合物分子工程国家重点实验室, 上海 200438
    3. 美国特拉华大学化学与生物分子工程系, 特拉华 涅瓦克 19716
    4. 甘肃省河西走廊特色资源 利用省级重点实验室, 甘肃 张掖 734000
  • 收稿日期:2019-02-27 修回日期:2019-05-08 出版日期:2019-09-05 发布日期:2019-09-05
  • 通讯作者: 禹兴海
  • 作者简介:禹兴海(1977—),男,博士,教授,yuxinghai455@163.com
  • 基金资助:
    国家自然科学基金项目(21865008);甘肃省委组织部青年人才专项(陇原青年创业创新人才团队)(甘组通字2018-81);复旦大学聚合物分子工程国家重点实验室开放课题项目(K-2018-14);河西学院博士科研启动项目(HXBQ 2017-05)

Preparation and properties of flexible supercapacitor based on biochar and solid gel-electrolyte

Xinghai YU1,2(),Qiliang LUO1,Jian PAN2,3,Yuqi HAN1,4,Qifeng ZHANG1   

  1. 1. Institute of Flexible Composite Materials, Hexi University, Zhangye 734000, Gansu, China
    2. The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
    3. Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, Delaware, USA
    4. Key Laboratory of Hexi Corridor Resources and Utilization of Gansu, Hexi University, Zhangye 734000, Gansu, China
  • Received:2019-02-27 Revised:2019-05-08 Online:2019-09-05 Published:2019-09-05
  • Contact: Xinghai YU

摘要:

利用固体农业废弃物玉米秸秆作为原料,经高温煅烧,KOH刻蚀获得具有较大比表面积的多孔生物炭材料,并采用粉末X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)、红外光谱(FT-IR)、拉曼光谱(Raman)以及比表面积和孔径分析仪(BET)等表征手段,研究其物理、化学结构和微观形貌。结果表明,所制备的生物炭材料具有发达的“微孔-中孔-大孔”三维贯通多级孔道结构,比表面积高达1228 m2·g-1。将其作为电极材料,与H2SO4/PVA凝胶电解质可组装成为具有柔性的全固态超级电容器。利用循环伏安测试(CV)、恒电流充放电(GCD)以及交流阻抗测试(EIS)对柔性超级电容器电化学性能进行了测试。在电流密度为1.0 A·g-1的条件下,其比容量可达125 F·g-1。该器件具有良好的机械柔性和电化学稳定性,将其从0°弯曲至180°的过程中,比电容保持率约为93.5%;以不同弯曲角度将其连续弯折100次后,仍能保持较高的比电容。此外,在弯折角度180°、充放电电流密度为5.0 A·g-1 的条件下经过500次循环充放电后,比电容值保持率约为95.6%,库仑效率约为94.9%。说明所制备的柔性超级电容器具有优异的充放电性能和长效循环稳定性。作为一种柔性、质轻、便携的储能装置,在可穿戴电子器件领域内具有潜在应用价值。同时该方法也为固体农业废弃物玉米秸秆的高附加值转化利用和新型绿色能源器件创新研制提供了新的技术途径。

关键词: 玉米秸秆, 生物炭, 固态凝胶电解质, 柔性, 超级电容器

Abstract:

In our present work, a typical biomass, maize straw was used as precursor to prepare porous biochar under high temperature followed with etching by KOH solution. The prepared biochar was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy (Raman). The specific surface area of as-prepared biochar was calculated by the Brunauer-Emmett-Teller (BET) method. Under the optimal conditions, the specific surface area can reach 1228 m2·g-1. Then the as-prepared biochar was employed as electrode materials to fabricate the flexible supercapacitor cooperating with the H2SO4/PVA gel as electrolyte. The electrochemical capacitance properties of the obtained supercapacitors were tested by cyclic voltammetry (CV) constant current charge-discharge (CD) and AC impedance spectroscopy (EIS) measurements in a two-electrode system. The results showed that the specific capacity reaches 125 F·g-1 when the current density is 1.0 A·g-1. Noteworthily, the fabricated supercapacitor demonstrates the perfectly flexibility and stability that the capacitance retention kept at 93.5% under different bending angles (from 0° to 180°) at a constant current density of 1.0 A·g-1. Furthermore, the flexible supercapacitor also exhibits a satisfied long-term stability performance of 95.6% capacitance retention and 94.9% coulombic efficiency under 180° bending angle through 500 cycles. These very attractive mechanical properties and electrochemical performances enable this flexible supercapacitor to present a great potential for wearable devices as energy storage equipment and open up new avenues to high-value materials from waste maize straw.

Key words: maize straw, biochar, solid gel electrolyte, flexibility, supercapacitor

中图分类号: