化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2722-2731.doi: 10.11949/0438-1157.20220120

• 催化、动力学与反应器 • 上一篇    下一篇

从质量流向漏斗流转变过程中的动力学分析

杨晖1(),李宏泽1,陈泉1,郑泽希2,李然1,3,孙其诚4()   

  1. 1.上海理工大学光电信息与计算机工程学院,上海 200093
    2.上海理工大学机械工程学院,上海 200093
    3.上海理工 大学医疗器械与食品学院,上海 200093
    4.清华大学水沙科学与水利水电工程国家重点实验室,北京 100084
  • 收稿日期:2022-01-20 修回日期:2022-04-09 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 孙其诚 E-mail:yanghui@usst.edu.cn;qcsun@tsinghua.edu.cn
  • 作者简介:杨晖(1981—),男,博士,教授,yanghui@usst.edu.cn
  • 基金资助:
    国家自然科学基金项目(91634202);上海市自然科学基金项目(20ZR1438800)

Dynamics of the transition of mass flow to funnel flow in a silo

Hui YANG1(),Hongze LI1,Quan CHEN1,Zexi ZHENG2,Ran LI1,3,Qicheng SUN4()   

  1. 1.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2.School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    3.School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    4.State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
  • Received:2022-01-20 Revised:2022-04-09 Published:2022-06-05 Online:2022-06-30
  • Contact: Qicheng SUN E-mail:yanghui@usst.edu.cn;qcsun@tsinghua.edu.cn

摘要:

球床模块式高温气冷堆的堆芯是全陶瓷型包覆铀燃料制成的球形颗粒,与石墨颗粒混合堆积而成,堆芯颗粒流的流态取决于颗粒尺度的平移、旋转等动力学量,以及力链、涡旋等介尺度物理量。为了分析颗粒的平移、旋转等动力学量对颗粒流流态的影响。基于筒仓颗粒流的物理模型,首先开展了筒仓颗粒流流变过程的实验测量,并使用基于 Hertz-Mindlin和 RVD (relative velocity dependent)滚动摩擦接触模型的离散单元法 (distinct element method, DEM),研究了锥形筒仓颗粒流流变过程中球形颗粒的动力学量。进一步,基于DEM计算结果进行分析,发现筒仓自上而下呈现出质量流向漏斗流过渡的混合流状态。在筒仓混合流的不同流型区域中,平移速度和旋转速度之间的相关性是相反的;颗粒间的相对切向运动较大的区域集中在漏斗流区域与边壁区域。了解筒仓流变过程中颗粒的动力学特征,有助于优化筒仓颗粒流动,并减少颗粒表面的磨损。

关键词: 颗粒流, 离散元模拟, 筒仓, 颗粒动力学

Abstract:

The flow of fuel element spheres in the pebble-bed high temperature reactor (HTR) is a typical granular flow. A mixed flow including mass flow and funnel flow can be found during HTR operation. Particle scale dynamics and mesoscale dynamics control the flow states and their transitions. In this work, we focus on analyzing the effects of particle translation, rotation and other dynamic quantities in physical model of the silo flow. We firstly carried out the experimental measurement of the rheological process of the silo particle, and used the discrete element method based on the Hertz-Mindlin and RVD (relative velocity dependent) rolling friction contact model. The kinetic quantities of spherical particles in the rheological process of particles in a conical silo were studied. Further, based on the analysis of DEM calculation results, it is found that the silo presents a mixed flow state of transition from mass flow to funnel flow from top to bottom. In the different flow pattern regions of the silo mixed flow, the correlation between the translational speed and the rotational speed is opposite; the regions with larger relative tangential motion between particles are concentrated in the funnel flow region and the side wall region. Understanding the dynamics of particles during silo rheology can help optimize silo particle flow and reduce particle surface wear.

Key words: granular flow, discrete element modeling, silo, granular kinetics

中图分类号: 

  • TQ 028.8

图1

堆芯颗粒流中的多尺度结构"

图2

筒仓及初始床层的几何结构以及单颗粒的运动"

表1

模拟仿真中的物理参数及其值"

位置参数符号/单位数值
颗粒密度ρp/(kg/m3)1400
杨氏模量Ep/Pa2.84×109
泊松比ν0.35
边壁密度ρw/(kg/m3)1180
杨氏模量Ep/Pa4.76×109
泊松比ν0.40
颗粒-颗粒静摩擦因数μp-p0.6
滚动摩擦因数μrp-p4.20×10-5
恢复系数ep0.87
颗粒-边壁静摩擦因数μp-w0.6
滚动摩擦因数μrp-w2.71×10-6
恢复系数ew0.88

图3

筒仓卸料过程中的流型"

图4

卸料过程中的MFI与流型转换高度"

图5

2~6 s内颗粒平均平移速度在空间上的分布"

图6

2~6 s内颗粒平均旋转速度在空间上的分布"

图7

2~6 s内不同流型区域内颗粒间由平移运动和由旋转运动产生的相对切向速度的空间相关性"

图8

2~6 s内颗粒平均滚动贡献率在空间上的分布"

1 Villagrán O M C, Benito J G, Uñac R O, et al. Towards a one parameter equation for a silo discharging model with inclined outlets[J]. Powder Technology, 2018, 336: 265-272.
2 Mathews J C, Wu W. Model tests of silo discharge in a geotechnical centrifuge[J]. Powder Technology, 2016, 293: 3-14.
3 卫思辰, 贾海兵, 范怡平, 等. 引入大颗粒助剂对径向移动床流动特性的影响[J]. 化工学报, 2016, 67(8): 3313-3320.
Wei S C, Jia H B, Fan Y P, et al. Effect of introducing large additive particles on flow characteristics in radial flow moving bed[J]. CIESC Journal, 2016, 67(8): 3313-3320.
4 Tu P, Vimonsatit V, Li J. Silo quake response spectrum of iron ore train load out bin[J]. Advanced Powder Technology, 2018, 29(11): 2775-2784.
5 Chen Q, Li R, Xiu W Z, et al. Measurement of granular temperature and velocity profile of granular flow in silos[J]. Powder Technology, 2021, 392: 123-129.
6 Sielamowicz I, Błoñski S, Kowalewski T A. Digital particle image velocimetry (DPIV) technique in measurements of granular material flows, part 2 of 3-converging hoppers[J]. Chemical Engineering Science, 2006, 61(16): 5307-5317.
7 Wang Q, Chen Q, Li R, et al. Shape of free-fall arch in quasi-2D silo[J]. Particuology, 2021, 55: 62-69.
8 Janda A, Zuriguel I, Maza D. Flow rate of particles through apertures obtained from self-similar density and velocity profiles[J]. Physical Review Letters, 2012, 108(24): 248001.
9 Wang R, Li R, Wang S S, et al. End wall effect on particle motion in a chute flow[J]. Particuology, 2021, 54: 102-108.
10 Yang H, Zhu Y H, Li R, et al. Kinetic granular temperature and its measurement using speckle visibility spectroscopy[J]. Particuology, 2020, 48: 160-169.
11 Song J, Yang H, Li R, et al. Improved PTV measurement based on Voronoi matching used in hopper flow[J]. Powder Technology, 2019, 355: 172-182.
12 Gentzler M, Tardos G I. Measurement of velocity and density profiles in discharging conical hoppers by NMR imaging[J]. Chemical Engineering Science, 2009, 64(22): 4463-4469.
13 Guillard F, Marks B, Einav I. Dynamic X-ray radiography reveals particle size and shape orientation fields during granular flow[J]. Scientific Reports, 2017, 7(1):8155.
14 Zhu Y H, Yang H, Li R, et al. Wireless detector for translational and rotational motion of spherical-particle flow[J]. Powder Technology, 2020, 360: 882-889.
15 赵颖, 朱兴望, 曲世祥, 等. 球形燃料元件累积旋转角度和角速度问题研究[J]. 核技术, 2016, 39(3): 76-82.
Zhao Y, Zhu X W, Qu S X, et al. Rotation angles and angular velocities study of pebble-shaped fuel element based on a detection system[J]. Nuclear Techniques, 2016, 39(3): 76-82.
16 Balevičius R, Kačianauskas R, Mróz Z, et al. Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes[J]. Advanced Powder Technology, 2011, 22(2): 226-235.
17 刘义伦, 刘思琪, 赵先琼, 等. 偏心楔形喂料斗卸料过程中颗粒流动特性[J]. 化工学报, 2018, 69(4): 1469-1475.
Liu Y L, Liu S Q, Zhao X Q, et al. Flow characteristics of granule discharged from eccentric wedge-shaped feed hopper[J]. CIESC Journal, 2018, 69(4): 1469-1475.
18 Weinhart T, Labra C, Luding S, et al. Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow[J]. Powder Technology, 2016, 293: 138-148.
19 Feng Y, Yuan Z R. Discrete element method modeling of granular flow characteristics transition in mixed flow[J]. Computational Particle Mechanics, 2021, 8(1): 21-34.
20 Yu Y W, Saxén H. Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres[J]. Advanced Powder Technology, 2011, 22(3): 324-331.
21 Washino K, Chan E L, Miyazaki K, et al. Time step criteria in DEM simulation of wet particles in viscosity dominant systems[J]. Powder Technology, 2016, 302: 100-107.
22 刘凡一, 张舰, 李博, 等. 基于堆积试验的小麦离散元参数分析及标定[J]. 农业工程学报, 2016, 32(12): 247-253.
Liu F Y, Zhang J, Li B, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(12): 247-253.
23 Höhner D, Wirtz S, Scherer V. Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method[J]. Powder Technology, 2013, 235: 614-627.
24 Simsek E. Experimental investigation and numerical simulation by means of the discrete element method[D]. Germany: Bochum University, 2011.
25 Tripathi A, Kumar V, Agarwal A, et al. Quantitative DEM simulation of pellet and sinter particles using rolling friction estimated from image analysis[J]. Powder Technology, 2021, 380: 288-302.
26 Mindlin R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics, 1949, 16(3): 259-268.
27 Ai J, Chen J F, Rotter J M, et al. Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206(3): 269-282.
28 Jenike A W. Gravity Flow of Bulk Solids[M]. Utah: Utah State University Press, 1961: 322.
29 Esteves P J, de Macêdo M C S, Souza R M, et al. Effect of ball rotation speed on wear coefficient and particle behavior in micro-abrasive wear tests[J]. Wear, 2019, 426/427: 137-141.
30 Zhang S, Yang G H, Lin P, et al. Inclined granular flow in a narrow chute[J]. The European Physical Journal. E, Soft Matter, 2019, 42(4): 40.
31 Han Y L, Jia F G, Li G R, et al. Numerical analysis of flow pattern transition in a conical silo with ellipsoid particles[J]. Advanced Powder Technology, 2019, 30(9): 1870-1881.
32 Zhang Y X, Jia F G, Zeng Y, et al. DEM study in the critical height of flow mechanism transition in a conical silo[J]. Powder Technology, 2018, 331: 98-106.
[1] 陈泉, 郑泽希, 李然, 孙其诚, 杨晖. 散斑能见度光谱法测量筒仓内颗粒流的颗粒温度[J]. 化工学报, 2022, 73(6): 2603-2611.
[2] 刘昌会, 刘红莉, 张天键, 饶中浩. 基于尿素/氯化胆碱低共熔溶剂体系纳米流体制备及其热物性研究[J]. 化工学报, 2021, 72(3): 1333-1341.
[3] 王洪远, 纪律, 孟繁旭, 李斌, 杨建蒙, 陈海生. 基于动态双重网格下喷动床滞止区流动特性CFD-DEM数值模拟[J]. 化工学报, 2021, 72(11): 5563-5572.
[4] 姚晶星,杨遥,黄正梁,孙婧元,王靖岱,阳永荣. 颗粒黏度模型对采用欧拉多相流模型模拟超密相颗粒流动行为的影响[J]. 化工学报, 2020, 71(11): 4945-4956.
[5] 杨宁, 周云龙, 马书生. 喷嘴结构改进及其液体射流过程颗粒团聚研究[J]. 化工学报, 2019, 70(S2): 169-180.
[6] 谈周妥,郭志罡,杨剑,王秋旺. 重力驱动颗粒流横掠倒置滴形管管外流动传热特性的数值研究[J]. 化工学报, 2019, 70(S2): 94-100.
[7] 冯乐乐, 王景玉, 吴玉新, 张海, 张缦, 吕俊复, 岳光溪. 颗粒特性对撞击分离器性能影响的实验与数值研究[J]. 化工学报, 2018, 69(8): 3348-3355.
[8] 刘义伦, 刘思琪, 赵先琼, 刘驰, 张喆. 偏心楔形喂料斗卸料过程中颗粒流动特性[J]. 化工学报, 2018, 69(4): 1469-1475.
[9] 王芬芬, 鄂承林, 赵爱红, 卢春喜. 提升管中颗粒局部流率和速度的改进的光纤测量方法[J]. 化工学报, 2016, 67(8): 3209-3223.
[10] 孟振亮, 刘梦溪, 李飞, 王维, 卢春喜. 新型气固环流反应器内颗粒流动的CFD模拟[J]. 化工学报, 2016, 67(8): 3234-3243.
[11] 魏庆, 姚秀颖, 张永民. 竖直管气固鼓泡流化床传热机理的CPFD模拟[J]. 化工学报, 2016, 67(5): 1732-1740.
[12] 梁坤峰, 阮春蕾, 王林, 袁竹林. 基于CCDM的流态化制冰的多相流动与传热特性[J]. 化工学报, 2015, 66(4): 1272-1281.
[13] 许鹏凯, 段学志, 钱刚, 周兴贵. 楔形中心和偏心料仓中壁面摩擦系数对卸料速率的影响[J]. 化工学报, 2015, 66(3): 880-887.
[14] 毕大鹏, 赵勇, 管清亮, 玄伟伟, 张建胜. 水冷壁气化炉内熔渣流动特性模型[J]. 化工学报, 2015, 66(3): 888-895.
[15] 赵伟, 陆海峰, 郭晓镭, 龚欣. CPFD在细颗粒料仓下料中的应用[J]. 化工学报, 2015, 66(2): 512-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 严月根,CalvertC.Churn,何光辉,郑巧庚,PhilipC.Y.Wong. 离浓度有毒化工废水处理工艺诊治和优化[J]. CIESC Journal, 2005, 13(6): 800 -808 .
[2] 李元, 周东华, 谢植, S.Joe.Qin. PVC生产过程故障传感器的检测与重构[J]. CIESC Journal, 2004, 12(2): 227 -233 .
[3] 王志, 赵媛媛, 叶楠, 王纪孝, 赵之平, 王世昌. 微滤和超滤膜流动电位的四种测量操作方式[J]. CIESC Journal, 2006, 14(4): 456 -463 .
[4] 于立军, 袁俊琪, 曹广益, 姜秀民. MCFC动态性能数值模拟[J]. CIESC Journal, 2004, 12(2): 272 -276 .
[5] 钟理, 罗京莉, K.Chuang. 中温H2S-空气燃料电池阴极催化剂的研究[J]. CIESC Journal, 2007, 15(3): 305 -308 .
[6] 王微微. 油气两相流空隙率测量[J]. CIESC Journal, 2007, 15(3): 339 -344 .
[7] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(I)非传质操作[J]. CIESC Journal, 2007, 15(3): 361 -368 .
[8] 姬忠礼, 彭书, 谭立村. 陶瓷过滤器脉冲反吹系统的流场的数值模拟[J]. CIESC Journal, 2003, 11(6): 626 -632 .
[9] 陈晶瑜, 张磊, 陈金春, 陈国强. Ralstonia eutropha PHB4重组菌合成PHA共聚物及性质测定[J]. CIESC Journal, 2007, 15(3): 391 -396 .
[10] 李勇飞, 严旭辉, 江国防, 刘强, 宋建新, 郭灿城. 金属卟啉催化的甲苯氧化及工艺优化[J]. CIESC Journal, 2007, 15(3): 453 -457 .