化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2603-2611.doi: 10.11949/0438-1157.20220128

• 流体力学与传递现象 • 上一篇    下一篇

散斑能见度光谱法测量筒仓内颗粒流的颗粒温度

陈泉1(),郑泽希2,李然1,3,孙其诚4,杨晖1()   

  1. 1.上海理工大学光电信息与计算机工程学院,上海 200093
    2.上海理工大学机械工程学院,上海 200093
    3.上海理工 大学医疗器械与食品学院,上海 200093
    4.清华大学水沙科学与水利水电工程国家重点实验室,北京 100084
  • 收稿日期:2022-01-21 修回日期:2022-04-28 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 杨晖 E-mail:chenquan@usst.edu.cn;yanghui@usst.edu.cn
  • 作者简介:陈泉(1990—),男,博士,博士后,chenquan@usst.edu.cn
  • 基金资助:
    国家自然科学基金项目(91634202);上海市自然科学基金项目(20ZR1438800);上海市“科技创新行动计划”启明星培育(扬帆专项)项目(22YF1429700)

Measurement of granular temperature during silo flow by speckle visibility spectroscopy

Quan CHEN1(),Zexi ZHENG2,Ran LI1,3,Qicheng SUN4,Hui YANG1()   

  1. 1.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2.School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    3.School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    4.State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
  • Received:2022-01-21 Revised:2022-04-28 Published:2022-06-05 Online:2022-06-30
  • Contact: Hui YANG E-mail:chenquan@usst.edu.cn;yanghui@usst.edu.cn

摘要:

筒仓内颗粒流在化工生产中广泛应用,准确描述颗粒流的动力学规律对于调控化工反应过程中的混合和传输效率极为重要。颗粒温度是影响颗粒流的重要参数之一,为此搭建了基于线阵CCD相机的散斑能见度光谱测量装置,选取均值粒径分别为0.94和1.55 mm的球形颗粒进行实验。通过测量卸料过程中筒仓内颗粒流的时变颗粒温度,发现了离散颗粒运动在介尺度条件下具有稳定性。进一步,对比两种粒径颗粒的颗粒温度值,观察到稳态流动中大粒径颗粒具有更高的能量耗散,从而建立了宏观质量流率与介观颗粒温度之间的联系。通过分析筒仓内颗粒温度场的分布特征,发现了孔口附近的离散颗粒存在定向有序的运动。最后,根据筒仓内颗粒流堵塞过程中的颗粒温度变化曲线,揭示了颗粒流堵塞的弛豫变化规律。实验结果揭示的筒仓内颗粒流的运动规律,为完善化工生产中颗粒材料的存储与运输提供了参考数据。

关键词: 颗粒流, 动力学, 介尺度, 颗粒温度, 堵塞

Abstract:

Granular flow in silos is widely used in chemical reactions. Accurately grasping the dynamic law of granular flow is extremely important for regulating the mixing and transmission efficiency in chemical reaction process. Granular temperature is one of the important parameters affecting granular flow. In this paper, a speckle visibility spectroscopy measurement device based on linear CCD camera is built, and spherical particles with mean particle sizes of 0.94 and 1.55 mm were selected. By measuring the time-varying granular temperature during silo flow, it was found that the discrete particle motion is stable under mesoscale conditions. Further, comparing the granular temperature values of the two particle sizes, it is observed that the larger particle size has higher energy dissipation in the steady-state flow, so the relationship between the macro mass flow rate and the mesoscopic granular temperature is established. In addition, by analyzing the distribution characteristics of the particle temperature field in the silo, it is found that the discrete particles near the orifice have directional and orderly motion. Finally, according to the curve of granular temperature during the jamming in silos. the relaxation change law of clogging is revealed. The experimental results reveal the law of granular flow in the silo, which provides reference data for improving the storage and transportation of granular material in chemical production.

Key words: granular flow, dynamics, mesoscale, granular temperature, jamming

中图分类号: 

  • TB 133

图1

实验玻璃珠的图片和颗粒粒径的累积分布(fCDF代表颗粒粒径的累积分布函数;d代表颗粒粒径)"

表1

实验颗粒材料的特征参数"

材料密度/(kg/m3)堆积密度/(kg/m3)d/mmβ/(°)静摩擦系数恢复系数
小玻璃珠25001567±210.94±0.0627.32±0.220.520.65
大玻璃珠25001428±341.55±0.0825.75±0.160.480.67

图2

实验装置实物图(D1代表筒仓孔口的长度)"

图3

散斑能见度光谱法测量颗粒温度的原理示意图[ES (t)代表光程为S的散射光子在t时刻的光强幅值;ki 代表入射激光经过i次散射后的波矢量]"

图4

筒仓内颗粒流测量点A(0, 10 mm, 0)的颗粒温度变化曲线(δˉv12代表稳态流中粒径为0.94 mm颗粒的平均颗粒温度;δˉv22代表稳态流中粒径为1.55 mm颗粒的平均颗粒温度)"

表2

统计筒仓内A位置的颗粒温度与质量流率"

参数12345678910
δv12/(mm2/s2)均值2.022.012.022.022.012.032.022.022.032.01
方差0.010.020.010.010.010.020.010.030.020.01
Q1 /(g/s)均值32.633.534.233.832.233.233.533.834.332.9
方差0.90.51.00.51.00.40.60.40.90.9
δv22/(mm2/s2)均值2.322.352.332.372.332.362.322.352.342.36
方差0.030.010.020.020.020.020.030.010.020.02
Q2 /(g/s)均值27.126.526.926.127.325.926.727.026.526.4
方差0.50.80.70.50.60.60.30.80.40.3

图5

稳态流动中筒仓内颗粒流的颗粒温度分布"

图6

堵塞过程中均值粒径为0.94 mm颗粒在筒仓内A位置的颗粒温度变化曲线(插图为堵塞前0.06 s时间内的颗粒温度曲线;蓝色实线代表拟合曲线;Δt表示堵塞过程的弛豫时间)"

图7

筒仓内颗粒流堵塞过程的弛豫时间Δt随孔口矩形槽长度D1的变化曲线"

1 周益娴. 基于连续数值模拟的筒仓卸载过程中颗粒物压强及其速度场分析[J]. 物理学报, 2019, 68(13): 134701.
Zhou Y X. Analysis of the granular pressure and velocity field of hourglass flow based on the local constitutive law[J]. Acta Physica Sinica, 2019, 68(13): 134701.
2 Mollon G, Zhao J D. Characterization of fluctuations in granular hopper flow[J]. Granular Matter, 2013, 15(6): 827-840.
3 俞良群, 邢纪波. 筒仓装卸料时力场及流场的离散单元法模拟[J]. 农业工程学报, 2000, 16(4): 15-19.
Yu L Q, Xing J B. Discrete element method simulation of forces and flow fields during filling and discharging materials in silos[J]. Transactions of the Chinese Society of Agricultural Engineering, 2000, 16(4): 15-19.
4 Medina A, Córdova J A, Luna E, et al. Velocity field measurements in granular gravity flow in a near 2D silo[J]. Physics Letters A, 1998, 250(1/2/3): 111-116.
5 Saleh K, Golshan S, Zarghami R. A review on gravity flow of free-flowing granular solids in silos - basics and practical aspects[J]. Chemical Engineering Science, 2018, 192: 1011-1035.
6 Maiti R, Das G, Das P K. Experiments on eccentric granular discharge from a quasi-two-dimensional silo[J]. Powder Technology, 2016, 301: 1054-1066.
7 Hidalgo R C, Lozano C, Zuriguel I, et al. Force analysis of clogging Arches in a silo[J]. Granular Matter, 2013, 15(6): 841-848.
8 Jop P, Forterre Y, Pouliquen O. Crucial role of side walls for granular surface flows: consequences for the rheology[EB/OL]. 2005: arXiv: cond-mat/0503425[cond-mat.soft]. .
9 孙其诚. 颗粒介质的结构及热力学[J]. 物理学报, 2015, 64(7): 076101.
Sun Q C. Granular structure and the nonequilibrium thermodynamics[J]. Acta Physica Sinica, 2015, 64(7): 076101.
10 Ogawa S, Umemura A, Oshima N. On the equations of fully fluidized granular materials[J]. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP, 1980, 31(4): 483-493.
11 Ahn H. Computer simulation of rapid granular flow through an orifice[J]. Journal of Applied Mechanics, 2007, 74(1): 111-118.
12 Tewari S, Dichter M, Chakraborty B. Signatures of incipient jamming in collisional hopper flows[J]. Soft Matter, 2013, 9(20): 5016.
13 Goetsch R J, Regele J D. Discrete element method prediction of particle curtain properties[J]. Chemical Engineering Science, 2015, 137: 852-861.
14 杨晖, 张国华, 王宇杰, 等. 密集颗粒体系的颗粒运动及结构测量技术[J]. 力学进展, 2018, 48: 541-590.
Yang H, Zhang G H, Wang Y J, et al. Measurement techniques of grain motion and inter-grain structures in dense granular materials[J]. Advances in Mechanics, 2018, 48: 541-590.
15 Bandyopadhyay R, Gittings A S, Suh S S, et al. Speckle-visibility spectroscopy: a tool to study time-varying dynamics[J]. Review of Scientific Instruments, 2005, 76(9): 093110.
16 Katsuragi H, Abate A R, Durian D J. Jamming and growth of dynamical heterogeneities versus depth for granular heap flow[J]. Soft Matter, 2010, 6(13): 3023.
17 Chen Q, Yang H, Li R, et al. Rearrangement of irregular sand particles in a rotary drum after avalanche flow[J]. Powder Technology, 2020, 360: 549-554.
18 陈泉, 杨晖, 李然, 等. 转筒颗粒流崩塌前后的颗粒温度和体积分数测量[J]. 中国科学: 物理学 力学 天文学, 2019, 49(6): 58-70.
Chen Q, Yang H, Li R, et al. Measurements of solid volume fraction and granular temperature at granular avalanches in a drum[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(6): 58-70.
19 Chen Q, Li R, Xiu W Z, et al. Dynamics of irregular particles in the passive layer under the slumping regime[J]. Powder Technology, 2020, 372: 32-39.
20 Barrett P J. The shape of rock particles, a critical review[J]. Sedimentology, 1980, 27(3): 291-303.
21 Henein H, Brimacombe J K, Watkinson A P. Experimental study of transverse bed motion in rotary kilns[J]. Metallurgical Transactions B, 1983, 14(2): 191-205.
22 Menon N, Durian D J. Diffusing-wave spectroscopy of dynamics in a three-dimensional granular flow[J]. Science, 1997, 275(5308): 1920-1922.
23 Dixon P K, Durian D J. Speckle visibility spectroscopy and variable granular fluidization[J]. Physical Review Letters, 2003, 90(18): 184302.
24 Weitz D A, Pine D J, Durian D J, et al. Diffusing wave spectroscopy: the dynamics of multiply scattering media[J]. MRS Proceedings, 1991, 253: 421.
25 Li R, Zheng G, Chen Q, et al. Two types of particle dynamics in the passive layer of a granular bed composed of irregular particles[J]. Powder Technology, 2020, 362: 231-237.
26 Yang H, Zhu Y H, Li R, et al. Kinetic granular temperature and its measurement using speckle visibility spectroscopy[J]. Particuology, 2020, 48: 160-169.
27 Nielsen J. Pressures from flowing granular solids in silos[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 356(1747): 2667-2684.
28 Choi J, Kudrolli A, Bazant M Z. Velocity profile of granular flows inside silos and hoppers[J]. Journal of Physics: Condensed Matter, 2005, 17(24): S2533-S2548.
29 Zhang Y X, Jia F G, Zeng Y, et al. DEM study in the critical height of flow mechanism transition in a conical silo[J]. Powder Technology, 2018, 331: 98-106.
30 Hu G Q, Zhang X S, Bao D S, et al. The molecular dynamics simulation of the effect of channel width on two dimensional granular flow[J]. Acta Physica Sinica, 2004, 53(12): 4277.
[1] 牛犁, 刘梦溪, 王海北. 密相流化床中介尺度流动结构的流体力学特性研究[J]. 化工学报, 2022, 73(6): 2622-2635.
[2] 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621.
[3] 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756.
[4] 王利民, 郭舒宇, 向星, 付少童. 湍流系统的能量最小多尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2415-2426.
[5] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[6] 潘大伟, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 微流控乳液模板法构建功能微颗粒过程中介尺度结构定向调控的研究进展[J]. 化工学报, 2022, 73(6): 2306-2317.
[7] 汪帆, 刘岩博, 李康丽, 童丽, 金美堂, 汤伟伟, 陈明洋, 龚俊波. 溶液结晶中的介尺度成核过程研究进展[J]. 化工学报, 2022, 73(6): 2318-2333.
[8] 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369.
[9] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[10] 管小平, 杨宁. 基于介尺度稳定性条件的多相流曳力与群体平衡模型[J]. 化工学报, 2022, 73(6): 2427-2437.
[11] 刘梦溪, 范怡平, 闫子涵, 姚秀颖, 卢春喜. 提升管进料区内气体射流流动行为的调控及工业应用[J]. 化工学报, 2022, 73(6): 2496-2513.
[12] 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
[13] 石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721.
[14] 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467.
[15] 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡志华, 杨燕华, 刘磊, 周芳德. 垂直上升管内有水平柱体时气液两相局部流型转变的研究[J]. CIESC Journal, 2006, 14(4): 442 -449 .
[2] 张英, 苏宏业, 褚健. 基于支持向量基的关联规则挖掘及其在模拟移动床PX吸附分离过程中的应用[J]. CIESC Journal, 2005, 13(6): 751 -757 .
[3] 叶树明, 蒋凯, 蒋春跃, 潘勤敏. 聚合物系动态超临界流体脱挥[J]. CIESC Journal, 2005, 13(6): 732 -735 .
[4] 朱春英,段志青, 高习群, 马友光, 余国琮. 氨基酸在非牛顿流体中的扩散[J]. CIESC Journal, 2006, 14(4): 450 -455 .
[5] 李令莱,周东华,王友清,孙德辉. 未知办理入扩展卡尔曼滤波的收敛性分析及其非线性故障诊断[J]. CIESC Journal, 2005, 13(6): 783 -790 .
[6] HUANGLixin,KurichiKumar,A.S.Mujumdar. 干燥室中不同液体的喷雾蒸发对流动、传热、传质性能的影响[J]. CIESC Journal, 2004, 12(6): 737 -743 .
[7] 唐晓津, 骆广生, 李洪波, 汪家鼎. 聚合-分散脉冲筛板萃取塔两相流动特性[J]. CIESC Journal, 2004, 12(1): 1 -6 .
[8] 马璐, 李浩然, 王从敏, 韩世钧. α-蒎烯+顺式蒎烷+正已醇体系的等温等压汽液平衡[J]. CIESC Journal, 2004, 12(1): 92 -95 .
[9] 余钊圣, 邵雪明, R.Tanner. 二维环形Couette设备中剪切引起的二维圆形固粒迁移的动态数值模拟[J]. CIESC Journal, 2007, 15(3): 333 -338 .
[10] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .