化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5563-5572.DOI: 10.11949/0438-1157.20210397
王洪远1,2(),纪律2,孟繁旭1,李斌1(),杨建蒙1,陈海生2
收稿日期:
2021-03-19
修回日期:
2021-08-31
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
李斌
作者简介:
王洪远(1995—),男,硕士研究生,Hongyuan WANG1,2(),Lyu JI2,Fanxu MENG1,Bin LI1(),Jianmeng YANG1,Haisheng CHEN2
Received:
2021-03-19
Revised:
2021-08-31
Online:
2021-11-05
Published:
2021-11-12
Contact:
Bin LI
摘要:
基于Fortran语言自行开发了基于动态双重网格方法下的喷动床内气固两相流动的CFD-DEM方法,同时开展了喷动床内径向混合实验与模拟研究,又结合单网格方法对喷动床内0~2.0 s内的滞止区特性进行对比分析,验证了动态双网格方法计算结果的准确性。然后利用动态双网格方法对不同进口气速下和不同初始堆积高度下的喷动床进行数值模拟研究,对滞止区颗粒流动过程进行追踪,结果表明:径向混合实验结果与数值模拟结果有很好一致性;在喷动床内存在一定的滞止区,滞止区内的颗粒流动性较差;初始堆积高度不变,随着进口速度的增加,滞止区高度下降速率和向喷口延伸速度无明显变化;进口速度不变,随着初始堆积高度的增加,滞止区颗粒下降速度随之增加,但其向喷口延伸速度逐渐变慢。
中图分类号:
王洪远, 纪律, 孟繁旭, 李斌, 杨建蒙, 陈海生. 基于动态双重网格下喷动床滞止区流动特性CFD-DEM数值模拟[J]. 化工学报, 2021, 72(11): 5563-5572.
Hongyuan WANG, Lyu JI, Fanxu MENG, Bin LI, Jianmeng YANG, Haisheng CHEN. CFD-DEM numerical simulation of flow characteristics in stagnation zone of spouted bed based on dynamic dual grid[J]. CIESC Journal, 2021, 72(11): 5563-5572.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
颗粒形状 | 球形 | 气体密度/(kg/m3) | 1.205 |
颗粒直径D/m | 0.004 | 气体黏度/(Pa·s) | 1.8×10-5 |
颗粒弹性系数/(N/m) | 200 | 空气进口速度/(m/s) | 27 |
恢复系数 | 0.9 | 床体几何尺寸/m | 0.15×0.004×0.9 |
颗粒数目 | 1904 | 喷口参数/m | 0.01×0.004 |
颗粒密度/(kg/m3) | 2700 | 初始床高/m | 0.18 |
摩擦系数 | 0.1 | 时间步长/s | 1×10-5 |
表1 数值模拟计算参数
Table 1 Calculation parameter in numerical simulation
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
颗粒形状 | 球形 | 气体密度/(kg/m3) | 1.205 |
颗粒直径D/m | 0.004 | 气体黏度/(Pa·s) | 1.8×10-5 |
颗粒弹性系数/(N/m) | 200 | 空气进口速度/(m/s) | 27 |
恢复系数 | 0.9 | 床体几何尺寸/m | 0.15×0.004×0.9 |
颗粒数目 | 1904 | 喷口参数/m | 0.01×0.004 |
颗粒密度/(kg/m3) | 2700 | 初始床高/m | 0.18 |
摩擦系数 | 0.1 | 时间步长/s | 1×10-5 |
1 | 付金良. 喷动流化床内气体混合的实验研究和气固两相流动的数值模拟[D]. 南京: 东南大学, 2006. |
Fu J L. Experimental research of gas mixing and numerical simulation for gas-solid two phases flow in a spouted-fluidization bed[D]. Nanjing: Southeast University, 2006. | |
2 | 袁竹林, 朱立平, 耿凡. 气固两相流动与数值模拟[M]. 南京: 东南大学出版社, 2013. |
Yuan Z L, Zhu L P, Geng F. Gas Solid Two Phase Flow and Numerical Simulation[M]. Nanjing: Southeast University Press, 2013. | |
3 | Xu B H, Yu A B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics[J]. Chemical Engineering Science, 1997, 52(16): 2785-2809. |
4 | 张科. 复杂稠密气固两相流动的CFD-DEM模拟研究[D]. 杭州: 浙江大学, 2012. |
Zhang K. CFD-DEM simulation of complex dense gas-solid flow[D]. Hangzhou: Zhejiang University, 2012. | |
5 | Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87. |
6 | 王迎慧, 归柯庭, 刘利, 等. 磁流化床气固两相流动的数值模拟及实验验证[J]. 东南大学学报(自然科学版), 2002, 32(6): 936-940. |
Wang Y H, Gui K T, Liu L, et al. Numerical simulation of gas-solid flows in MFBs and experimental demonstration[J]. Journal of Southeast Univwrsity (Natural Science Edition), 2002, 32(6): 936-940. | |
7 | 张锴, Stefano Brandani. 流化床内颗粒流体两相流的CFD模拟[J]. 化工学报, 2010, 61(9): 2192-2207. |
Zhang K, Stefano B. CFD simulation of particle-fluid two-phase flow in fluidized beds[J]. CIESC Journal, 2010, 61(9): 2192-2207. | |
8 | 李斌, 滕昭钰, 张尚彬, 等. 不同进气方式的流化床内颗粒混合特性的数值模拟[J]. 动力工程学报, 2019, 39(2): 85-91. |
Li B, Teng Z Y, Zhang S B, et al. Numerical simulation on particle mixing characteristics in a fluidized bed under different intake modes[J]. Journal of Chinese Society of Power Engineering, 2019, 39(2): 85-91. | |
9 | Kuang S B, Li K, Zou R P, et al. Application of periodic boundary conditions to CFD-DEM simulation of gas-solid flow in pneumatic conveying[J]. Chemical Engineering Science, 2013, 93: 214-228. |
10 | 王敬哲. 气流-喷动床气固两相流动与干燥特性研究[D]. 大连: 大连理工大学, 2017. |
Wang J Z. Study on gas solid two phase flow and drying characteristics in spouted bed with gas stream[D]. Dalian: Dalian University of Technology, 2017. | |
11 | 彭丽, 吴迎亚, 李佳瑶, 等. 基于DEM模拟气固鼓泡床中颗粒碰撞参数对流场间歇性的影响[J]. 化工学报, 2015, 66(6): 2041-2048. |
Peng L, Wu Y Y, Li J Y, et al. Effect of granular collision parameters on DEM simulation of flow field intermittency in gas-solids bubbling fluidized bed[J]. CIESC Journal, 2015, 66(6): 2041-2048. | |
12 | Olaofe O O, Patil A V, Deen N G, et al. Simulation of particle mixing and segregation in bidisperse gas fluidized beds[J]. Chemical Engineering Science, 2014, 108: 258-269. |
13 | Hilton J E, Mason L R, Cleary P W. Dynamics of gas-solid fluidised beds with non-spherical particle geometry[J]. Chemical Engineering Science, 2010, 65(5): 1584-1596. |
14 | 杨建蒙, 李斌, 王洪远, 等. 基于MFIX开源程序下的气固两相流动特性的数值模拟[J]. 动力工程学报, 2020, 40(7): 564-570. |
Yang J M, Li B, Wang H Y, et al. Numerical simulation of gas-solid two-phase flow based on MFIX[J]. Journal of Chinese Society of Power Engineering, 2020, 40(7): 564-570. | |
15 | 钟文琪. 喷动流化床流体动力学特性及放大规律研究[D]. 南京: 东南大学, 2007. |
Zhong W Q. Study on hydrodynamic characteristics and amplification law of spouted fluidized bed[D]. Nanjing: Southeast University, 2007. | |
16 | Apostolou K, Hrymak A N. Discrete element simulation of liquid-particle flows[J]. Computers & Chemical Engineering, 2008, 32(4/5): 841-856. |
17 | 庞明军, 魏进家, 刘海燕, 等. 泡状流相分布及湍流结构的欧拉-拉格朗日双向耦合数值研究[J]. 西安交通大学学报, 2010, 44(7): 1-5. |
Pang M J, Wei J J, Liu H Y, et al. Numerical investigation on phase distribution and turbulence of liquid in bubbly flow using Euler-Lagrange two-way method[J]. Journal of Xi'an Jiaotong University, 2010, 44(7): 1-5. | |
18 | Shrestha S, Kuang S B, Yu A B, et al. Particle shape effect on bubble dynamics in central air jet pseudo-2D fluidized beds: a CFD-DEM study[J]. Chemical Engineering Science, 2019, 201: 448-466. |
19 | 田凤国, 章明川, 齐永锋, 等. 流化床轴径向混合特性的数值研究[J]. 中国电机工程学报, 2006, 26(21): 119-124. |
Tian F G, Zhang M C, Qi Y F, et al. A numerical investigation on axial/lateral mixing in fluidized beds[J]. Proceedings of the CSEE, 2006, 26(21): 119-124. | |
20 | 李斌, 纪律. 流化床炉内颗粒混合的离散单元法数值模拟[J]. 中国电机工程学报, 2012, 32(20): 42-48, 137. |
Li B, Ji L. Numerical simulation of particle mixing in circulating fluidized bed with discrete element method[J]. Proceedings of the CSEE, 2012, 32(20): 42-48, 137. | |
21 | Ding J M, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4): 523-538. |
22 | Clarke D A, Sederman A J, Gladden L F, et al. Investigation of void fraction schemes for use with CFD-DEM simulations of fluidized beds[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 3002-3013. |
23 | Zhang H, Liu M, Li T, et al. Experimental investigation on gas-solid hydrodynamics of coarse particles in a two-dimensional spouted bed[J]. Powder Technology, 2017, 307: 175-183. |
24 | Volk A, Ghia U, Liu G R. Assessment of CFD-DEM solution error against computational cell size for flows through a fixed-bed of binary-sized particles[J]. Powder Technology, 2018, 325: 519-529. |
25 | Peng Z B, Doroodchi E, Luo C M, et al. Influence of void fraction calculation on fidelity of CFD-DEM simulation of gas-solid bubbling fluidized beds[J]. AIChE Journal, 2014, 60(6): 2000-2018. |
26 | Wu G R, Ouyang J, Yang B X, et al. Use of compromise-based local porosities for coarse grid DEM simulation of bubbling fluidized bed with large particles[J]. Advanced Powder Technology, 2013, 24(1): 68-78. |
27 | 吴国荣, 欧阳洁. 鼓泡床床层高度的细网格DEM模拟[J]. 化工学报, 2014, 65(6): 2092-2097. |
Wu G R, Ouyang J. Fine grid DEM simulation of bed layer height in bubbling fluidized-bed[J]. CIESC Journal, 2014, 65(6): 2092-2097. | |
28 | Boyce C M, Holland D J, Scott S A, et al. Limitations on fluid grid sizing for using volume-averaged fluid equations in discrete element models of fluidized beds[J]. Industrial & Engineering Chemistry Research, 2015, 54(43): 10684-10697. |
29 | 张俊强. 基于双重网格的流化床内流动与传热特性的数值模拟[D]. 保定: 华北电力大学, 2017. |
Zhang J Q. Numerical simulation of the hydrodynamics and heat transfer characteristics of fluidized bed based on double-grid method[D]. Baoding: North China Electric Power University, 2017. | |
30 | Alobaid F, Ströhle J, Epple B. Extended CFD/DEM model for the simulation of circulating fluidized bed[J]. Advanced Powder Technology, 2013, 24(1): 403-415. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[3] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[7] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[8] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[12] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[13] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[14] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[15] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 365
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 517
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||