化工学报 ›› 2022, Vol. 73 ›› Issue (11): 4884-4892.DOI: 10.11949/0438-1157.20221011
收稿日期:
2022-07-20
修回日期:
2022-09-27
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
杨剑
作者简介:
田兴(1994—),男,博士研究生,tianxing12@stu.xjtu.edu.cn
基金资助:
Xing TIAN(), Jiayue ZHANG, Zhigang GUO, Jian YANG(), Qiuwang WANG
Received:
2022-07-20
Revised:
2022-09-27
Online:
2022-11-05
Published:
2022-12-06
Contact:
Jian YANG
摘要:
为了提高板壳式换热器的换热性能,通过离散元法研究了平面、梯形、椭圆形、梯形+椭圆形和三角形掺混单元对颗粒流动和换热的影响。研究表明:平面的掺混率几乎为零,梯形掺混单元的掺混率最高。颗粒在绕过除平面外的掺混单元时,温度边界层被破坏,并在掺混单元下游区域重新发展。在掺混单元上游区域,掺混单元对颗粒运动有阻碍作用,阻碍作用越大接触热阻越小。颗粒在梯形掺混单元下游的特征速度最大,入口平均温度最高。梯形掺混单元的掺混效率最高。在掺混单元下游区域,梯形、椭圆形、梯形+椭圆形和三角形掺混单元的传热系数显著大于平面(平均增加41.5%、31.5%、28.9%和25.3%)。相比其他掺混单元,颗粒外掠梯形掺混单元的流动换热特性最好。
中图分类号:
田兴, 张家悦, 郭志罡, 杨剑, 王秋旺. 颗粒外掠含不同掺混单元平板的流动换热特性[J]. 化工学报, 2022, 73(11): 4884-4892.
Xing TIAN, Jiayue ZHANG, Zhigang GUO, Jian YANG, Qiuwang WANG. Flow and heat transfer characteristics of particles flowing along the plate with different mixing elements[J]. CIESC Journal, 2022, 73(11): 4884-4892.
变量 | 值 |
---|---|
L/mm | 16 |
W/mm | 5 |
H/mm | 66 |
Tinlet/K | 800 |
Tw/K | 300 |
ρp/(kg/m3) | 2680 |
cp,p/(J/(kg·K)) | 730 |
kp/(W/(m·K)) | 1.3 |
voutlet/(mm/s) | 1.0~10.0 |
dp/mm | 1.0 |
表1 模拟中使用的几何尺寸和颗粒性质
Table 1 Geometric and particle parameters in simulation
变量 | 值 |
---|---|
L/mm | 16 |
W/mm | 5 |
H/mm | 66 |
Tinlet/K | 800 |
Tw/K | 300 |
ρp/(kg/m3) | 2680 |
cp,p/(J/(kg·K)) | 730 |
kp/(W/(m·K)) | 1.3 |
voutlet/(mm/s) | 1.0~10.0 |
dp/mm | 1.0 |
图6 区域1出口平均接触时间(tc)和区域1特征速度(vfe)随出口速度的变化
Fig.6 Variations of the average contact time (tc) at zone 1 outlet and the feature velocity (vfe) in zone 1 with outlet velocity
图7 区域3出口平均接触时间(tc)和区域3特征速度(vfe)随出口速度的变化
Fig.7 Variations of the average contact time (tc) at zone 3 outlet and the feature velocity (vfe) in zone 3 with outlet velocity
图9 颗粒绕掺混单元温度分布示意图(voutlet=4 mm/s)
Fig.9 Schematic diagram of temperature distribution of particle flowing around different mixing elements (voutlet=4 mm/s)
1 | Jiang K J, Du X Z, Kong Y Q, et al. A comprehensive review on solid particle receivers of concentrated solar power[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109463. |
2 | Behar O, Khellaf A, Mohammedi K. A review of studies on central receiver solar thermal power plants[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 12-39. |
3 | He Y L, Qiu Y, Wang K, et al. Perspective of concentrating solar power[J]. Energy, 2020, 198: 117373. |
4 | Nie F L, Cui Z Y, Bai F W, et al. Properties of solid particles as heat transfer fluid in a gravity driven moving bed solar receiver[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110007. |
5 | Gomez-Garcia F, Gauthier D, Flamant G. Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage[J]. Applied Energy, 2017, 190: 510-523. |
6 | Fernández-Torrijos M, Albrecht K J, Ho C K. Dynamic modeling of a particle/supercritical CO2 heat exchanger for transient analysis and control[J]. Applied Energy, 2018, 226: 595-606. |
7 | Ma Z W, Martinek J. Analysis of a fluidized-bed particle/supercritical-CO2 heat exchanger in a concentrating solar power system[J]. Journal of Solar Energy Engineering, 2021, 143(3): 031010. |
8 | Ho C K, Carlson M, Albrecht K J, et al. Evaluation of alternative designs for a high temperature particle-to-SCO2 heat exchanger[C]//Proceedings of ASME 2018 12th International Conference on Energy Sustainability Collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum. Lake Buena Vista, Florida, USA, 2018. |
9 | Yin J M, Zheng Q Y, Zhang X R. Heat transfer model of a particle energy storage-based moving packed bed heat exchanger[J]. Energy Storage, 2020, 2(1): e113. |
10 | Wei G S, Huang P R, Pan L F, et al. Experimental, numerical and analytical modeling of heat transfer of gravity driven dense particle flow in vertical heated plates[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122571. |
11 | Fang W C, Chen S, Xu J Y, et al. Predicting heat transfer coefficient of a shell-and-plate, moving packed-bed particle-to-sCO2 heat exchanger for concentrating solar power[J]. Energy, 2021, 217: 119389. |
12 | Yu Y P, Nie F L, Bai F W, et al. Theoretical and experimental investigation on heating moving packed beds in a single tube with constant wall temperature[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121725. |
13 | Albrecht K J, Ho C K. Heat transfer models of moving packed-bed particle-to-SCO2 heat exchangers[C]//ASME 2017 11th International Conference on Energy Sustainability. Charlotte, North Carolina, USA: American Society of Mechanical Engineers, 2017. |
14 | Albrecht K J, Ho C K. Design and operating considerations for a shell-and-plate, moving packed-bed, particle-to-sCO2 heat exchanger[J]. Solar Energy, 2019, 178: 331-340. |
15 | Guo Z G, Tan Z T, Tian X, et al. Heat transfer prediction of granular flow in moving bed heat exchanger: characteristics of heat transfer enhancement and dynamic control[J]. Solar Energy, 2021, 230: 1052-1069. |
16 | 郭志罡, 杨剑, 田兴, 等. 不同翅片单元外颗粒流换热特性的数值研究[J]. 工程热物理学报, 2021, 42(4): 1015-1020. |
Guo Z G, Yang J, Tian X, et al. Numerical study on heat transfer characteristic of granular flow around different fin elements[J]. Journal of Engineering Thermophysics, 2021, 42(4): 1015-1020. | |
17 | Tian X, Yang J, Guo Z G, et al. Numerical investigation of gravity-driven granular flow around the vertical plate: effect of pin-fin and oscillation on the heat transfer[J]. Energies, 2021, 14(8): 2187. |
18 | Isaza P A, Warnica W D, Bussmann M. Co-current parallel-plate moving bed heat exchanger: an analytical solution[J]. International Journal of Heat and Mass Transfer, 2015, 87: 616-624. |
19 | di Renzo A, di Maio F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59(3): 525-541. |
20 | Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992, 71(3): 239-250. |
21 | Deng S G, Wen Z, Lou G F, et al. Process of particles flow across staggered tubes in moving bed[J]. Chemical Engineering Science, 2020, 217: 115507. |
22 | Zhang R Q, Yang H R, Lu J F, et al. Theoretical and experimental analysis of bed-to-wall heat transfer in heat recovery processing[J]. Powder Technology, 2013, 249: 186-195. |
23 | Tsotsas E. Particle-particle heat transfer in thermal DEM: three competing models and a new equation[J]. International Journal of Heat and Mass Transfer, 2019, 132: 939-943. |
24 | Chen R H, Guo K L, Zhang Y S, et al. Numerical analysis of the granular flow and heat transfer in the ADS granular spallation target[J]. Nuclear Engineering and Design, 2018, 330: 59-71. |
25 | Molerus O. Heat transfer in moving beds with a stagnant interstitial gas[J]. International Journal of Heat and Mass Transfer, 1997, 40(17): 4151-4159. |
26 | Tian X, Guo Z G, Jia H N, et al. Numerical investigation of a new type tube for shell-and-tube moving packed bed heat exchanger[J]. Powder Technology, 2021, 394: 584-596. |
27 | Tian X, Zhu F, Guo Z G, et al. Numerical investigation of gravity-driven particle flow along the trapezoidal corrugated plate for a moving packed bed heat exchanger[J]. Powder Technology, 2022, 405: 117526. |
28 | Guo Z G, Tian X, Tan Z T, et al. Numerical investigation of heat resistances in uniform dense granular flows along a vertical plate[J]. Powder Technology, 2021, 385: 396-408. |
29 | Bauer R, Schluender E U. Effective radial thermal conductivity of packings in gas flow-1.Convective transport coefficient[J]. International Chemical Engineering, 1978, 18: 181-188. |
30 | Bauer R, Schluender E U. Effective radial thermal conductivity of packings in gas flow-2.Thermal conductivity of the packing fraction without gas flow[J]. International Chemical Engineering, 1978, 18: 189-204. |
31 | Breitbach G, Barthels H. The radiant heat transfer in the high temperature reactor core after failure of the afterheat removal systems[J]. Nuclear Technology, 1980, 49(3): 392-399. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 349
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 221
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||