化工学报 ›› 2020, Vol. 71 ›› Issue (11): 4945-4956.DOI: 10.11949/0438-1157.20200446
姚晶星1,3(),杨遥2,3(),黄正梁2,3,孙婧元2,3,王靖岱1,2,3,阳永荣1,2,3
收稿日期:
2020-04-29
修回日期:
2020-07-03
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
杨遥
作者简介:
姚晶星(1996—),男,硕士研究生,基金资助:
Jingxing YAO1,3(),Yao YANG2,3(),Zhengliang HUANG2,3,Jingyuan SUN2,3,Jingdai WANG1,2,3,Yongrong YANG1,2,3
Received:
2020-04-29
Revised:
2020-07-03
Online:
2020-11-05
Published:
2020-11-05
Contact:
Yao YANG
摘要:
颗粒黏度是欧拉多相流模型计算固体流动的重要参数之一,其数值大小依赖于摩擦压力和径向分布函数。通过与实验值对比,评估了常用的摩擦压力模型(Based、Johnson)和径向分布函数模型(Lun、Syamlal O’Brien)对密相颗粒流动体系的预测能力。模拟结果表明,Johnson模型的固体体积分数预测值低于Based模型;Syamlal O’Brien 模型固体流率的预测值远大于Lun模型。采用根据实验结果修正的欧根系数后,Based-Lun、Johnson-Lun和Johnson-SO模型组合预测的平均压降相对误差分别由68.6%、73.3%和78.2%降低至13.2%、29.7%和42.3%。综合考虑压降、固体出口质量流率、固体体积分数、壁面区域固体速度的模拟结果与实验值的偏差,发现Based-Lun模型组合的平均预测误差最小,适用于气固移动床的欧拉多相流模拟。研究还发现,欧根系数与内摩擦角对固体速度与压降有着显著的影响,而临界固含率对固体速度与压降的影响较小。
中图分类号:
姚晶星,杨遥,黄正梁,孙婧元,王靖岱,阳永荣. 颗粒黏度模型对采用欧拉多相流模型模拟超密相颗粒流动行为的影响[J]. 化工学报, 2020, 71(11): 4945-4956.
Jingxing YAO,Yao YANG,Zhengliang HUANG,Jingyuan SUN,Jingdai WANG,Yongrong YANG. Impact of viscosity model on simulation of condensed particle flow by Euler multiphase flow model[J]. CIESC Journal, 2020, 71(11): 4945-4956.
图1 气固移动床冷模实验装置1—空气压缩机;2—缓冲罐;3—流量计;4—料仓;5—进口阀;6—移动床;7—光源;8—高速相机;9—出口阀;10—差压传感器;11—计算机
Fig.1 Cold-model experimental system for gas-solid moving bed reactor
Model | Correlation |
---|---|
governing equations | |
continuity equations | gas: |
solid: | |
momentum equations | gas: |
solid: | |
constitutive equation | |
solid pressure | |
solid shear viscosity | |
collisional viscosity | |
kinetic viscosity | |
frictional viscosity | |
bulk viscosity | |
granular conductivity | |
gas-solid drag coefficient |
表1 数学模型方程
Table 1 Mathematical formulas for simulation
Model | Correlation |
---|---|
governing equations | |
continuity equations | gas: |
solid: | |
momentum equations | gas: |
solid: | |
constitutive equation | |
solid pressure | |
solid shear viscosity | |
collisional viscosity | |
kinetic viscosity | |
frictional viscosity | |
bulk viscosity | |
granular conductivity | |
gas-solid drag coefficient |
Parameter | Value |
---|---|
gas flow rate /(m3·h-1) | 1.0 |
particle-particle coefficient of restitution,e | 0.9 |
internal frictional angle,θ / (°) | 22 |
threshold volume fraction for friction,εs,min | 0.5 |
maximum solids packing,εs,max | 0.57 |
initial solids packing,εs,initial | 0.56 |
gas inlet boundary type | velocity inlet |
outlet boundary type | pressure outlet |
wall boundary type | no slip |
表2 欧拉多相流模拟参数设置
Table 2 Parameters setting of Euler multiphase flow simulations
Parameter | Value |
---|---|
gas flow rate /(m3·h-1) | 1.0 |
particle-particle coefficient of restitution,e | 0.9 |
internal frictional angle,θ / (°) | 22 |
threshold volume fraction for friction,εs,min | 0.5 |
maximum solids packing,εs,max | 0.57 |
initial solids packing,εs,initial | 0.56 |
gas inlet boundary type | velocity inlet |
outlet boundary type | pressure outlet |
wall boundary type | no slip |
1 | 田恬. 密集颗粒物料流动特性数值模拟研究[D]. 北京: 中国科学院大学, 2017. |
Tian T. Numerical investigation of the flow behavior of dense granular materials[D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
2 | Pallarès D, Johnsson F. A novel technique for particle tracking in cold 2-dimensional fluidized beds—simulating fuel dispersion[J]. Chemical Engineering Science, 2006, 61(8): 2710-2720. |
3 | Sette E, Pallarès D, Johnsson F, et al. Magnetic tracer-particle tracking in a fluid dynamically down-scaled bubbling fluidized bed[J]. Fuel Processing Technology, 2015, 138: 368-377. |
4 | Boelhouwer J G, Pipers H W, Drinkenburg A A H. Nature and characteristics of pulsing flow in trickle-bed reactors[J]. Chemical Engineering Science, 2002, 57(22/23): 4865-4876. |
5 | White D J, Take W A, Bolton M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631. |
6 | Slominski C, Niedostatkiewicz M, Tejchman J. Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow[J]. Powder Technology, 2007, 173(1): 1-18. |
7 | Zhao T, Eda T, Achyut S, et al. Investigation of pulsing flow regime transition and pulse characteristics in trickle-bed reactor by electrical resistance tomography[J]. Chemical Engineering Science, 2015, 130: 8-17. |
8 | Kou B, Cao Y, Xia C, et al. Granular materials flow like complex fluids[J]. Nature, 2017, 551(7680): 360-363. |
9 | Wang Z, Afacan A, Nandakumar K, et al. Porosity distribution in random packed columns by gamma ray tomography[J]. Chemical Engineering and Processing: Process Intensification, 2001, 40(3): 209-219. |
10 | Demoisson F, Ariane M, Leybros A, et al. Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials[J]. The Journal of Supercritical Fluids, 2011, 58(3): 371-377. |
11 | Uebel K, Rößger P, Prüfert U, et al. CFD-based multi-objective optimization of a quench reactor design[J]. Fuel Processing Technology, 2016, 149: 290-304. |
12 | Á Frías-Ferrer, Tudela I, Louisnard O, et al. Optimized design of an electrochemical filter-press reactor using CFD methods[J]. Chemical Engineering Journal, 2011, 169(1/2/3): 270-281. |
13 | Dixon A G, Nijemeisland M. CFD as a design tool for fixed-bed reactors[J]. Ind. Eng. Chem. Res., 2001, 40(23): 5246-5254. |
14 | Ding J, Wang X, Zhou X, et al. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production[J]. Bioresour. Technol., 2010, 101(18): 7005-7013. |
15 | Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J].Géotechnique, 1979, 29(1): 47-65. |
16 | Baniasadi M, Peters B. Resolving multiphase flow through packed bed of solid particles using extended discrete element method with porosity calculation[J]. Industrial & Engineering Chemistry Research, 2017, 56(41): 11996-12008. |
17 | Boccardo G, Augier F, Haroun Y, et al. Validation of a novel open-source work-flow for the simulation of packed-bed reactors[J]. Chemical Engineering Journal, 2015, 279: 809-820. |
18 | Gidaspow D. Hydrodynamics of fluidization and heat transfer: supercomputer modeling[J]. Applied Mechanics Reviews, 1986, 39(1): 1-23. |
19 | Lan X, Xu C, Gao J, et al. Influence of solid-phase wall boundary condition on CFD simulation of spouted beds[J]. Chemical Engineering Science, 2012, 69(1): 419-430. |
20 | Srivastava A, Sundaresan S. Analysis of a frictional-kinetic model for gas-particle flow[J]. Powder Technology, 2003, 129(1/2/3): 72-85. |
21 | He Y, Xiao F Z, Luo Z H. Numerical modeling of the cavity phenomenon and its elimination way in rectangular radial moving bed reactor[J]. Powder Technology, 2015, 274: 28-36. |
22 | Bertuola D, Volpato S, Canu A, et al. Prediction of segregation in funnel and mass flow discharge[J]. Chemical Engineering Science, 2016, 150: 16-25. |
23 | Tian T, Su J, Zhan J, et al. Discrete and continuum modeling of granular flow in silo discharge[J]. Particuology, 2018, 36: 127-138. |
24 | Du W, Bao X, Xu J, et al. Computational fluid dynamics (CFD) modeling of spouted bed: assessment of drag coefficient correlations [J]. Chemical Engineering Science, 2006, 61(14): 1401-1420. |
25 | He Y L, Lim C J, Grace J R, et al. Measurements of voidage profiles inspouted beds[J]. The Canadian Journal of Chemical Engineering, 1994, 72(2): 229-234. |
26 | Lundberg J. CFD study of a bubbling fluidized bed[D]. Norway: Telemark University College, 2008. |
27 | Lun C K K, Savage S B, Jeffrey D J, et al. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield[J]. Journal of Fluid Mechanics, 2006, 140: 223-256. |
28 | Gidaspow D. Multiphase Flow and Fluidization[M]. Boston: Academic Press, 1994. |
29 | Schaeffer D G. Instability in the evolution equations describing incompressible granular flow[J]. Journal of Differential Equations, 1987, 66: 19-50. |
30 | Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds, kinetic theory approach[C]// Fluidization Ⅶ. Proceedings of the 7th Engineering Foundation Conference on Fluidization. 1992: 75-82. |
31 | Johnson P C, Nott P, Jackson R. Frictional-collisional equations of motion for particulate flows and their application to chutes[J]. Journal of Fluid Mechanics, 1990, 210: 501-535. |
32 | Ogawa S, Umemure A, Oshima N. On the equation of fully fluidized granular materials[J]. Journal of Applied Mathematics and Physics, 1980, 31: 483-493. |
33 | Lebowitz J L. Exact solution of generalized Percus-Yevick equation for a mixture of hard spheres[J]. Journal of the Physical Review, 1964, 133: A895-A899. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[7] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[8] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[14] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 371
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 661
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||