化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1092-1101.DOI: 10.11949/0438-1157.20221460
刘倩1,2,3(), 曹禹1, 周琦2(), 穆景山1(), 历伟3,4
收稿日期:
2022-11-08
修回日期:
2023-01-18
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
周琦,穆景山
作者简介:
刘倩(1998—),女,硕士研究生,1042646737@qq.com
基金资助:
Qian LIU1,2,3(), Yu CAO1, Qi ZHOU2(), Jingshan MU1(), Wei LI3,4
Received:
2022-11-08
Revised:
2023-01-18
Online:
2023-03-05
Published:
2023-04-19
Contact:
Qi ZHOU, Jingshan MU
摘要:
从SiO2载体孔道修饰的角度出发,向多级孔道中同时引入聚苯乙烯(PS)和聚倍半硅氧烷(POSS),形成功能化复合载体,并用于负载TiCl4,制备SiO2/PS/POSS/TiCl4负载型催化剂。采用热重分析、N2等温吸附脱附、扫描电镜、漫反射红外光谱等手段对修饰前后催化剂的结构进行表征,发现利用苯乙烯的原位聚合能够向SiO2多级孔道,尤其是微孔中引入PS,孔道内 PS链段的溶胀行为导致聚合时乙烯传质阻力增大,聚合活性降低。向SiO2多级孔道中引入POSS,由于POSS分子的空间位阻,其只能进入SiO2大孔中,初生态聚乙烯分子链缠结程度降低有限。而将PS与POSS共同引入催化剂各级孔道中,PS与POSS能够产生良性协同作用,能够以高活性制备低缠结的超高分子量聚乙烯,显著提升了产品的抗冲击强度。最后通过降低孔道内TiCl4的负载量,进一步稀释催化剂活性中心,实现聚乙烯活性链解缠结的过程强化。当钛含量降至2.65%时,聚合活性、抗冲击强度和链缠结程度均达到最佳。
中图分类号:
刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101.
Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement[J]. CIESC Journal, 2023, 74(3): 1092-1101.
Supports | Pore size /nm | Surface area /(cm2·g-1) | Pore volume /(cm3·g-1) |
---|---|---|---|
SiO2 | 24.99 | 204.12 | 1.74 |
SiO2/PS | 23.77 | 201.28 | 1.51 |
SiO2/POSS | 20.67 | 206.24 | 1.23 |
SiO2/PS/POSS | 19.26 | 202.61 | 1.10 |
表1 复合载体的孔径参数
Table 1 Pore size parameters of composite supporters
Supports | Pore size /nm | Surface area /(cm2·g-1) | Pore volume /(cm3·g-1) |
---|---|---|---|
SiO2 | 24.99 | 204.12 | 1.74 |
SiO2/PS | 23.77 | 201.28 | 1.51 |
SiO2/POSS | 20.67 | 206.24 | 1.23 |
SiO2/PS/POSS | 19.26 | 202.61 | 1.10 |
Catalyst | Ti(Ⅳ) 2p1/2 | Ti(Ⅳ) 2p3/2 | Mg 2p | |||
---|---|---|---|---|---|---|
BE/eV | FWHM/eV | BE/eV | FWHM/eV | BE/eV | FWHM/eV | |
SiO2/TiCl4 | 464.27 | 3.32 | 459.21 | 2.92 | 51.06 | 2.88 |
SiO2/POSS/TiCl4 | 465.03 | 3.21 | 459.35 | 2.83 | 51.15 | 2.72 |
SiO2/PS/TiCl4 | 464.39 | 3.33 | 459.25 | 2.97 | 51.08 | 2.89 |
SiO2/PS/POSS/TiCl4 | 465.07 | 3.14 | 459.39 | 2.78 | 51.20 | 2.69 |
表2 PS/POSS修饰催化剂的XPS分析结果
Table 2 XPS analysis results of catalysts modified by PS or POSS
Catalyst | Ti(Ⅳ) 2p1/2 | Ti(Ⅳ) 2p3/2 | Mg 2p | |||
---|---|---|---|---|---|---|
BE/eV | FWHM/eV | BE/eV | FWHM/eV | BE/eV | FWHM/eV | |
SiO2/TiCl4 | 464.27 | 3.32 | 459.21 | 2.92 | 51.06 | 2.88 |
SiO2/POSS/TiCl4 | 465.03 | 3.21 | 459.35 | 2.83 | 51.15 | 2.72 |
SiO2/PS/TiCl4 | 464.39 | 3.33 | 459.25 | 2.97 | 51.08 | 2.89 |
SiO2/PS/POSS/TiCl4 | 465.07 | 3.14 | 459.39 | 2.78 | 51.20 | 2.69 |
Samples | Ti/ %(mass) | Act/ (106 g PE⋅ (mol Ti·h)-1) | Bulk density/ (g·cm-3) | Mη / (106 g·mol-1) | MWD | Mw / (106 g·mol-1) | ||||
---|---|---|---|---|---|---|---|---|---|---|
PE-SiO2/TiCl4 | 5.43 | 2.83 | 0.30 | 144.38 | 137.85 | 69.12 | 56.51 | 1.84 | 2.5 | 0.53 |
PE-SiO2/POSS/TiCl4 | 4.82 | 3.03 | 0.31 | 144.01 | 137.68 | 68.35 | 57.32 | 2.09 | 2.6 | 0.64 |
PE-SiO2/PS/TiCl4 | 5.31 | 2.47 | 0.33 | 144.31 | 137.51 | 67.26 | 58.41 | 2.72 | 2.8 | 0.82 |
PE-SiO2/PS/POSS/TiCl4 | 4.54 | 3.28 | 0.32 | 145.08 | 138.16 | 70.12 | 59.02 | 3.47 | 3.0 | 1.25 |
PE-SiO2/PS/POSS/TiCl4-reduce the loading content | ||||||||||
Cat-TiCl4-10 ml | 4.54 | 3.28 | 0.32 | 145.08 | 138.16 | 70.12 | 59.02 | 3.47 | 3.0 | 1.25 |
Cat-TiCl4-8 ml | 3.66 | 4.77 | 0.35 | 144.78 | 137.91 | 71.95 | 61.3 | 3.48 | 3.0 | 1.27 |
Cat-TiCl4-6 ml | 2.65 | 5.39 | 0.37 | 144.80 | 137.04 | 71.20 | 60.05 | 3.64 | 3.1 | 1.32 |
Cat-TiCl4-4 ml | 1.68 | 3.70 | 0.33 | 144.54 | 137.79 | 70.05 | 58.95 | 3.50 | 3.1 | 1.28 |
UHMWPE | — | — | 0.33 | 144.43 | 137.32 | 58.26 | 45.01 | 3.50 | 2.9 | 1.31 |
表3 乙烯聚合结果
Table 3 The results of ethylene polymerization
Samples | Ti/ %(mass) | Act/ (106 g PE⋅ (mol Ti·h)-1) | Bulk density/ (g·cm-3) | Mη / (106 g·mol-1) | MWD | Mw / (106 g·mol-1) | ||||
---|---|---|---|---|---|---|---|---|---|---|
PE-SiO2/TiCl4 | 5.43 | 2.83 | 0.30 | 144.38 | 137.85 | 69.12 | 56.51 | 1.84 | 2.5 | 0.53 |
PE-SiO2/POSS/TiCl4 | 4.82 | 3.03 | 0.31 | 144.01 | 137.68 | 68.35 | 57.32 | 2.09 | 2.6 | 0.64 |
PE-SiO2/PS/TiCl4 | 5.31 | 2.47 | 0.33 | 144.31 | 137.51 | 67.26 | 58.41 | 2.72 | 2.8 | 0.82 |
PE-SiO2/PS/POSS/TiCl4 | 4.54 | 3.28 | 0.32 | 145.08 | 138.16 | 70.12 | 59.02 | 3.47 | 3.0 | 1.25 |
PE-SiO2/PS/POSS/TiCl4-reduce the loading content | ||||||||||
Cat-TiCl4-10 ml | 4.54 | 3.28 | 0.32 | 145.08 | 138.16 | 70.12 | 59.02 | 3.47 | 3.0 | 1.25 |
Cat-TiCl4-8 ml | 3.66 | 4.77 | 0.35 | 144.78 | 137.91 | 71.95 | 61.3 | 3.48 | 3.0 | 1.27 |
Cat-TiCl4-6 ml | 2.65 | 5.39 | 0.37 | 144.80 | 137.04 | 71.20 | 60.05 | 3.64 | 3.1 | 1.32 |
Cat-TiCl4-4 ml | 1.68 | 3.70 | 0.33 | 144.54 | 137.79 | 70.05 | 58.95 | 3.50 | 3.1 | 1.28 |
UHMWPE | — | — | 0.33 | 144.43 | 137.32 | 58.26 | 45.01 | 3.50 | 2.9 | 1.31 |
Ti content/% | Ti(Ⅳ) 2p1/2 | Ti(Ⅳ) 2p3/2 | Mg 2p | |||
---|---|---|---|---|---|---|
BE/ eV | FWHM/eV | BE/ eV | FWHM/eV | BE/ eV | FWHM/eV | |
4.27 | 465.15 | 3.02 | 459.35 | 2.51 | 51.30 | 2.48 |
3.66 | 465.15 | 2.97 | 459.37 | 2.48 | 51.50 | 2.33 |
2.65 | 465.24 | 2.78 | 459.39 | 2.31 | 51.69 | 2.28 |
1.68 | 465.13 | 2.67 | 459.35 | 2.29 | 51.19 | 2.18 |
表4 不同钛含量催化剂XPS分析结果
Table 4 XPS analysis results of catalysts with different titanium contents
Ti content/% | Ti(Ⅳ) 2p1/2 | Ti(Ⅳ) 2p3/2 | Mg 2p | |||
---|---|---|---|---|---|---|
BE/ eV | FWHM/eV | BE/ eV | FWHM/eV | BE/ eV | FWHM/eV | |
4.27 | 465.15 | 3.02 | 459.35 | 2.51 | 51.30 | 2.48 |
3.66 | 465.15 | 2.97 | 459.37 | 2.48 | 51.50 | 2.33 |
2.65 | 465.24 | 2.78 | 459.39 | 2.31 | 51.69 | 2.28 |
1.68 | 465.13 | 2.67 | 459.35 | 2.29 | 51.19 | 2.18 |
Ti content/% | Fmax①/MPa | YM②/MPa | ε③/% | Izod④/(kJ·m-2) |
---|---|---|---|---|
4.27 | 27.5±2.6 | 386.7±46.0 | 569.7±73.0 | 108.0±0.8 |
3.66 | 27.2±0.9 | 394.5±62.0 | 535.8±52.0 | 110.2±2.2 |
2.65 | 31.0±1.5 | 385.2±47.0 | 474.3±44.0 | 116.6±5.5 |
1.68 | 32.0±2.2 | 365.2±47.0 | 444.3±44.0 | 108.6±5.5 |
表5 超高分子量聚乙烯力学性能参数
Table 5 Mechanical properties of disentanglement polyethylene
Ti content/% | Fmax①/MPa | YM②/MPa | ε③/% | Izod④/(kJ·m-2) |
---|---|---|---|---|
4.27 | 27.5±2.6 | 386.7±46.0 | 569.7±73.0 | 108.0±0.8 |
3.66 | 27.2±0.9 | 394.5±62.0 | 535.8±52.0 | 110.2±2.2 |
2.65 | 31.0±1.5 | 385.2±47.0 | 474.3±44.0 | 116.6±5.5 |
1.68 | 32.0±2.2 | 365.2±47.0 | 444.3±44.0 | 108.6±5.5 |
1 | 陈莉蓉. 超高分子量聚乙烯多孔材料的制备及性能研究[D]. 广州: 华南理工大学, 2017. |
Chen L R. Preparation and property studies of UHMWPE porous materials[D]. Guangzhou: South China University of Technology, 2017. | |
2 | Ronca S, Forte G, Tjaden H, et al. Tailoring molecular structure via nanoparticles for solvent-free processing of ultra-high molecular weight polyethylene composites[J]. Polymer, 2012, 53(14): 2897-2907. |
3 | Romano D, Tops N, Andablo-Reyes E, et al. Influence of polymerization conditions on melting kinetics of low entangled UHMWPE and its implications on mechanical properties[J]. Macromolecules, 2014, 47(14): 4750-4760. |
4 | 陈创, 于俊荣, 王新威, 等. 超高相对分子质量聚乙烯中空纤维膜的制备与性能研究[J]. 化工新型材料, 2015, 43(1): 43-45, 54. |
Chen C, Yu J R, Wang X W, et al. Preparation and property of ultrahigh molecular weight polyethylene hollow fiber membranes[J]. New Chemical Materials, 2015, 43(1): 43-45, 54. | |
5 | Kurek A, Xalter R, Stürzel M, et al. Silica nanofoam (NF) supported single-and dual-site catalysts for ethylene polymerization with morphology control and tailored bimodal molar mass distributions[J]. Macromolecules, 2013, 46(23): 9197-9201. |
6 | Wang H D, Li Y, Li W, et al. The microstructure-tensile property relationship of polyethylene resin for biaxially stretched film[J]. Journal of Polymer Research, 2022, 29(1): 31. |
7 | Rastogi S, Lippits D R, Peters G W M, et al. Heterogeneity in polymer melts from melting of polymer crystals[J]. Nature Materials, 2005, 4(8): 635-641. |
8 | 梁鹏. POSS诱导高性能非均相Ziegler-Natta催化剂与原位红外光谱研究[D]. 杭州: 浙江大学, 2021. |
Liang P. POSS-induced high-performance Ziegler-Natta catalysts and investigation of in situ infrared spectroscopy[D]. Hangzhou: Zhejiang University, 2021. | |
9 | Hui L, Yue Z, Yang H Q, et al. Influence of the fragmentation of POSS-modified heterogeneous catalyst on the formation of chain entanglements[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9400-9406. |
10 | Chen Y M, Liang P, Yue Z, et al. Entanglement formation mechanism in the POSS modified heterogeneous Ziegler-Natta catalysts[J]. Macromolecules, 2019, 52(20): 7593-7602. |
11 | Wu Y J, Yang H Q, Li W, et al. Tailored crystalline order of nascent polyethylene from metallocene supported on confined polystyrene[J]. Catalysis Today, 2021, 368: 272-280. |
12 | Li W, Jiang B B, Wang J D, et al. Organic/inorganic support for immobilizing (n-BuCp)2ZrCl2/TiCl3 hybrid catalyst for use in the preparation of polymer blends[J]. Polymer International, 2011, 60(4): 676-684. |
13 | Wight A P, Davis M E. Design and preparation of organic-inorganic hybrid catalysts[J]. Chemical Reviews, 2002, 102(10): 3589-3613. |
14 | Du L J, Li W, Fan L N, et al. Hybrid titanium catalyst supported on core-shell silica/poly(styrene-co-acrylic acid) carrier[J]. Journal of Applied Polymer Science, 2010, 118(3): 1743-1751. |
15 | Choi M, Kleitz F, Liu D N, et al. Controlled polymerization in mesoporous silica toward the design of organic-inorganic composite nanoporous materials[J]. Journal of the American Chemical Society, 2005, 127(6): 1924-1932. |
16 | 吴雁捷. SiO2/聚苯乙烯复合材料的制备与乙烯聚合研究 [D]. 宁波:宁波大学, 2020. |
Wu Y J. Preparation of SiO2/polystyrene composite and study on ethylene polymerization[D]. Ningbo: Ningbo University, 2020. | |
17 | Sifri R J, Padilla-Vélez O, Coates G W, et al. Controlling the shape of molecular weight distributions in coordination polymerization and its impact on physical properties[J]. Journal of the American Chemical Society, 2020, 142(3):1443-1448. |
18 | Chen M, Chen Y M, Li W, et al. Synthesis of weakly entangled ultra-high-molecular-weight polyethylene with a fine particle size[J]. Industrial & Engineering Chemistry Research, 2021, 60(8): 3354-3362. |
19 | Li W, Hui L, Xue B, et al. Facile high-temperature synthesis of weakly entangled polyethylene using a highly activated Ziegler-Natta catalyst[J]. Journal of Catalysis, 2018, 360: 145-151. |
20 | Li W, Yang H Q, Zhang J J, et al. Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene[J]. Chemical Communications, 2016, 52(74): 11092-11095. |
21 | de Camargo Forte M M, da Cunha F V, dos Santos J H Z. Characterization and evaluation of the nature of chemical species generated in hybrid Ziegler-Natta/metallocene catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2001, 175(1/2): 91-103. |
22 | 陈毓明. 低缠结UHMWPE的制备及其与HDPE原位共混行为的研究[D]. 杭州:浙江大学, 2020. |
Chen Y M. The synthesis of weakly entangled UHMWPE and its in-situ blending with HDPE[D]. Hangzhou: Zhejiang University, 2020. | |
23 | Hikosaka M, Watanabe K, Okada K, et al. Topological mechanism of polymer nucleation and growth—the role of chain sliding diffusion and entanglement[M]//Interphases and Mesophases in Polymer Crystallization Ⅲ. Berlin/Heidelberg: Springer-Verlag, 2005: 137-186. |
24 | Liang P, Li W, Chen Y M, et al. Revealing the dynamic behaviors of tetrahydrofuran for tailoring the active species of Ziegler-Natta catalysts[J]. ACS Catalysis, 2021, 11(8), 4411-4421. |
25 | Liu K S, de Boer E L, Yao Y F, et al. Heterogeneous distribution of entanglements in a nonequilibrium polymer melt of UHMWPE: influence on crystallization without and with graphene oxide[J]. Macromolecules, 2016, 49(19): 7497-7509. |
26 | Litvinov V M, Ries M E, Baughman T W, et al. Chain entanglements in polyethylene melts. Why is it studied again?[J]. Macromolecules, 2013, 46(2): 541-547. |
27 | Zhang Y, Di Y T, Ye C L, et al. Morphology evolution and mechanical property enhancement of linear low-density polyethylene by adding disentangled ultrahigh molecular weight polyethylene[J]. Polymers for Advanced Technologies, 2022, 33(4): 1047-1056. |
28 | Patel K, Chikkali S H, Sivaram S. Ultrahigh molecular weight polyethylene: catalysis, structure, properties, processing and applications[J]. Progress in Polymer Science, 2020, 109: 101290. |
29 | Stürzel M, Thomann Y, Enders M, et al. Graphene-supported dual-site catalysts for preparing self-reinforcing polyethylene reactor blends containing UHMWPE nanoplatelets and in situ UHMWPE shish-kebab nanofibers[J]. Macromolecules, 2014, 47(15): 4979-4986. |
30 | Tanase S, Yabunouchi N, Konakazawa T, et al. Magnesium compound, solid catalyst component, olefin polymerization catalyst, and method for producing olefin polymer: US20070219326[P]. 2007-09-20. |
31 | Galli P, Haylock J C. Advances in Ziegler-Natta polymerization-unique polyolefin copolymers, alloys and blends made directly in the reactor[J]. Makromolekulare Chemie Macromolecular Symposia, 1992, 63(1): 19-54. |
32 | Baier M C, Zuideveld M A, Mecking S. Post-metallocenes in the industrial production of polyolefins[J]. Angewandte Chemie (International Ed. in English), 2014, 53(37): 9722-9744. |
33 | Kageyama K, Tamazawa J, Aida T. Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica[J]. Science, 1999, 285(5436): 2113-2115. |
34 | Zhang H, Zhao S C, Yu X, et al. Nascent particle sizes and degrees of entanglement are responsible for the significant differences in impact strength of ultrahigh molecular weight polyethylene[J]. Journal of Polymer Science Part B: Polymer Physics, 2019, 57(10): 632-641. |
[1] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[2] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[3] | 陈号, 田仪娟, 全学军, 蒋子文, 李纲. 铬铁矿在HCl-HF体系中的分解行为[J]. 化工学报, 2023, 74(3): 1161-1174. |
[4] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[5] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
[6] | 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077. |
[7] | 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467. |
[8] | 范小强, 黄正梁, 孙婧元, 王靖岱, 王晓飞, 胡晓波, 韩国栋, 阳永荣, 吴文清. 气液法流化床乙烯云聚合工艺开发及产品高性能化[J]. 化工学报, 2022, 73(6): 2742-2747. |
[9] | 刘梦溪, 范怡平, 闫子涵, 姚秀颖, 卢春喜. 提升管进料区内气体射流流动行为的调控及工业应用[J]. 化工学报, 2022, 73(6): 2496-2513. |
[10] | 葛世轶, 杨遥, 黄正梁, 孙婧元, 王靖岱, 阳永荣. 基于静电分选解析聚乙烯颗粒生长与形貌演变[J]. 化工学报, 2022, 73(4): 1585-1596. |
[11] | 王利霞, 毕肇杰, 史淼磊, 王晨, 王东方, 李倩. UHMWPE/PEG共混方式及配比对UHMWPE缠结行为及性能的影响[J]. 化工学报, 2022, 73(2): 933-940. |
[12] | 黄明, 朱亮, 丁紫霞, 毛一婷, 马中青. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报, 2022, 73(2): 699-711. |
[13] | 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235. |
[14] | 贺兴处,陈德珍,梅振飞,阿迪力·巴吐尔null,安青. CaO催化PE热解及H2O对催化过程影响的ReaxFF MD研究与机理分析[J]. 化工学报, 2021, 72(9): 4665-4674. |
[15] | 李闯, 张扬, 刘小娟, 王学重. 添加剂作用下阿司匹林结晶模拟和实验研究[J]. 化工学报, 2021, 72(9): 4796-4807. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||