化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 453-460.doi: 10.11949/0438-1157.20201517

• 能源和环境工程 • 上一篇    下一篇

基于余热利用的活化MDEA法脱除CO2的天然气液化系统

何婷(),林文胜()   

  1. 上海交通大学制冷与低温工程研究所,上海 200240
  • 收稿日期:2020-10-29 修回日期:2021-01-15 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 林文胜 E-mail:heting1995@sjtu.edu.cn;linwsh@sjtu.edu.cn
  • 作者简介:何婷(1995—),女,博士研究生,heting1995@sjtu.edu.cn

Natural gas liquefaction system with activated MDEA method for CO2 removal based on waste heat utilization

HE Ting(),LIN Wensheng()   

  1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-10-29 Revised:2021-01-15 Published:2021-06-20 Online:2021-06-20
  • Contact: LIN Wensheng E-mail:heting1995@sjtu.edu.cn;linwsh@sjtu.edu.cn

摘要:

沼气以及CO2驱采油的伴生气中都含有大量的CO2。为降低高含CO2天然气液化的能耗,提出了活化甲基二乙醇胺(MDEA)法脱除CO2的天然气液化系统,将液化厂中驱动压缩机的燃气轮机烟气余热用于吸收剂的再生过程,实现能耗的降低。采用HYSYS软件对系统进行了模拟研究并对脱碳过程的关键参数进行了分析。结果表明,CO2含量不超过10%时,脱碳再生的热耗可全部由烟气余热提供,CO2含量为30%时,烟气余热可提供接近50%的再生热耗;CO2含量为1%~30%时,系统的比功耗为0.577~0.611 kW·h/kg。

关键词: CO2, 液化, 天然气, 活化甲基二乙醇胺, 余热利用

Abstract:

Biogas and the associated gas produced by CO2 flooding oil recovery contain large amount of CO2. In order to reduce the energy consumption of high CO2-content natural gas liquefaction process, a natural gas liquefaction system that uses activated methyldiethanolamine (MDEA) to remove CO2 is proposed, and the waste heat of exhaust from the gas turbine driving the compressors in the liquefaction plant is utilized in the regeneration process of the absorbent. The HYSYS software is used to simulate the system and analyze the key parameters of the decarbonization process. The results show that waste heat of gas turbine exhaust can provide all the heat load for the regeneration system with a CO2 content not exceeding 10% in feed gas. Even if the CO2 is up to 30%, it can also provide nearly 50% regenerative heat load. Furthermore, when the CO2 content in feed gas is 1% — 30%, the specific power consumption of the system is 0.577 — 0.611 kW·h/kg.

Key words: carbon dioxide, liquefaction, natural gas, activated MDEA, waste heat utilization

中图分类号: 

  • TQ 025.4

图1

基于余热利用的化学吸收法脱除CO2的天然气液化系统A—吸收塔;C—压缩机;D—再生塔;HE—换热器;P—泵;Q—热量;S—气液分离器;T—储罐;V—阀;W—功;WC—水冷器;X—组分分离器"

表1

优化参数的上下限"

ParametersLower boundUpper bound
N301-C1/(kmol/h)30004000
N301-C2/(kmol/h)30004000
N301-C3/(kmol/h)8001200
N301-C4/(kmol/h)200600
N301-N2/(kmol/h)300800
p302/kPa20003500
T310/℃-150-130
T306/℃-100-80
T304/℃-45-20
N401/(kmol/h)30007000
p402/kPa10001800

表2

净化段节点参数"

FlowT/℃p/kPaMolar flow/(kmol/h)CO2 content/%CH4 content/%
1014010172001090
10340150072001090
10440.0314406473099.56
20140150168690.010
203401440168690.010
20467.951500175644.030.03
20567.91200175644.030.03
20885200175494.020
210113.2150167900.010
21189150167900.010
5016001209410
5021761209410
6011002006000
602120.22006000

表3

液化段节点参数"

FlowT/℃p/kPaMolar flow/(kmol/h)
1054014006473
1074050006473
108-3550006473
109-11250006473
110-162.550006473
111-160.71106473
301371208682
3034030008682
304-3430008682
306-9430005416
307-114.31205416
310-14530003266
311-165.61203266
40135.191205289
4034013805289
404-38.251205289

图2

系统比功耗随吸收压力的变化曲线"

表4

系统的能量消耗"

CO2 content/%Regeneration heat load /(kJ/m3)Net regeneration heat load/(kJ/m3)Purification power consumption/(kW·h/m3)w/(kW·h/kg)α/%
1140.1900.0960.57725.1
10828.9900.0870.58484.9
302116.191092.50.0990.61192.0

表5

不同沼气净化技术的特点[29]"

Upgrading technologiesCH4 purity (vol)/%

Energy consumption

(kW·h/m3 of raw biogas)

H2S/water pre-upgradingAdditional heat
water scrubbing + regeneration97 (93—99)0.3 (0.2—0.46)necessarynot necessary
physical absorption97 (95—99)0.25 (0.2—0.3)necessarynecessary
chemical absorption98 (97—99)0.4 (0.3—0.8)not necessarynecessary
pressure swing absorption97 (95—99)0.25 (0.2—0.3)necessarynot necessary
membrane technology95 (80—99)0.3 (0.15—0.43)not necessarynot necessary

表6

系统的物质消耗"

CO2 content/%Circulation amine /(kmol/h)η/%Replenish solvent water /(kmol/h)
140350.0346
10168700.1156
30456820.2870

图3

冷热流体换热曲线"

图4

塔顶净化气中CO2含量随贫胺液进塔温度的变化"

图5

塔顶净化气中CO2含量及增压泵功耗随吸收塔压力变化曲线"

图6

再沸器的热负荷随再生塔进料温度的变化曲线"

图7

再生塔底贫液温度随再生塔解吸压力的变化"

1 程序, 崔宗均, 朱万斌. 论另类非常规天然气: 生物天然气的开发[J]. 天然气工业, 2013, 33(1): 137-144.
Cheng X, Cui Z J, Zhu W B. A discussion on the exploitation of biogas: another kind of unconventional natural gas resources [J]. Natural Gas Industry, 2013, 33(1): 137-144.
2 Kárászová M, Sedláková Z, Izák P. Gas permeation processes in biogas upgrading: a short review [J]. Chemical Papers, 2015, 69(10): 1277-1283.
3 赵洪坤. CO2驱采油技术研究与应用现状[J]. 中国石油和化工标准与质量, 2016, 36(16): 99, 102.
Zhao H K. Research and application status of CO2 flooding oil recovery technology [J]. China Petroleum and Chemical Standard and Quality, 2016, 36(16): 99, 102.
4 陈小华. 浅述二氧化碳驱油技术应用现状[J]. 中国石油和化工标准与质量, 2019, 39(12): 43-44, 46.
Chen X H. Brief introduction to the application status of carbon dioxide flooding technology [J]. China Petroleum and Chemical Standard and Quality, 2019, 39(12): 43-44, 46.
5 马鹏飞, 韩波, 张亮, 等. 油田CO2驱产出气处置方案及CO2捕集回注工艺[J]. 化工进展, 2017, 36(S1): 533-539.
Ma P F, Han B, Zhang L, et al. Disposal scheme of produced gas and CO2 capture for re-injection in CO2 EOR [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 533-539.
6 周淑霞. 沼气液化制取生物质LNG关键技术研究[D]. 济南: 山东大学, 2012.
Zhou S X. Research on key technologies on liquefied production of biomass LNG from biogas [D]. Jinan: Shandong University, 2012.
7 袁青, 刘音, 毕研霞, 等. 油气田开发中CO2腐蚀机理及防腐方法研究进展[J]. 天然气与石油, 2015, 33(2): 78-81, 13.
Yuan Q, Liu Y, Bi Y X, et al. Research on CO2 corrosion and corrosion control method in oil and gas field development [J]. Natural Gas and Oil, 2015, 33(2): 78-81, 13.
8 王玉柱, 蒋洪, 赵建彬, 等. 天然气回收乙烷中二氧化碳固体形成的防控措施[J]. 天然气化工(C1化学与化工), 2020, 45(2): 106-112.
Wang Y Z, Jiang H, Zhao J B, et al. Prevention and control measures of carbon dioxide solid formation in ethane recovery from natural gas [J]. Natural Gas Chemical Industry, 2020, 45(2): 106-112.
9 常学煜, 李玉星, 张盈盈, 等. 天然气脱酸工艺参数优化及节能研究[J]. 天然气化工(C1化学与化工), 2017, 42(3): 67-72, 92.
Chang X Y, Li Y X, Zhang Y Y, et al. Optimization of process parameters and energy-saving research for natural gas deacidification process [J]. Natural Gas Chemical Industry, 2017, 42(3): 67-72, 92.
10 李超伟, 仵浩, 范良忠. 两种物理吸收法在沼气脱碳中的模拟对比研究[J]. 可再生能源, 2012, 30(9): 75-79.
Li C W, Wu H, Fan L Z. Comparative study of two physical absorption method in the simulation of biogas decarbonization [J]. Renewable Energy Resources, 2012, 30(9): 75-79.
11 Liu Z, Green W H. Experimental investigation of sorbent for warm CO2 capture by pressure swing adsorption [J]. Industrial & Engineering Chemistry Research, 2013, 52(28): 9665-9673.
12 Awad A, Aljundi I H. Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas [J]. Energy, 2018, 157: 188-199.
13 Berstad D, Nekså P, Anantharaman R. Low-temperature CO2 removal from natural gas [J]. Energy Procedia, 2012, 26: 41-48.
14 万宇飞, 邓骁伟, 程涛, 等. 不同含碳量天然气脱碳方案选择[J]. 油气田环境保护, 2013, 23(3): 56-58, 75.
Wan Y F, Deng X W, Cheng T, et al. Decarbonization scheme selection for natural gas with different carbon content [J]. Environmental Protection of Oil & Gas Fields, 2013, 23(3): 56-58, 75.
15 Yang H Q, Xu Z H, Fan M H, et al. Progress in carbon dioxide separation and capture: a review [J]. Journal of Environmental Sciences, 2008, 20(1): 14-27.
16 Banat F, Younas O, Didarul I. Energy and exergical dissection of a natural gas sweetening plant using methyldiethanol amine (MDEA) solution [J]. Journal of Natural Gas Science and Engineering, 2014, 16: 1-7.
17 Moioli S, Giuffrida A, Romano M C, et al. Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants [J]. Applied Energy, 2016, 183: 1452-1470.
18 陈杰, 郭清, 花亦怀, 等. MDEA+MEA/DEA混合胺液脱碳性能试验研究[J]. 天然气工业, 2014, 34(5): 137-143.
Chen J, Guo Q, Hua Y H, et al. An experimental study of absorption and desorption of blended amine solutions MDEA+MEA/DEA for natural gas decarburization [J]. Natural Gas Industry, 2014, 34(5): 137-143.
19 陈颖, 赵越超, 梁宏宝, 等. 以MDEA为主体的混合胺溶液吸收CO2研究进展[J]. 应用化工, 2014, 43(3): 531-534, 538.
Chen Y, Zhao Y C, Liang H B, et al. Progress in CO2 absorption using active MDEA based aqueous solutions [J]. Applied Chemical Industry, 2014, 43(3): 531-534, 538.
20 Privalova E, Rasi S, Mäki-Arvela P, et al. CO2 capture from biogas: absorbent selection [J]. RSC Advances, 2013, 3(9): 2979-2994.
21 张磊, 蒋洪. 高含CO2天然气脱碳工艺中MDEA活化剂优选[J]. 石油与天然气化工, 2017, 46(4): 22-29.
Zhang L, Jiang H. MDEA activator optimization for decarbonization process of high CO2-containing natural gas [J]. Chemical Engineering of Oil & Gas, 2017, 46(4): 22-29.
22 Hajji A, Chahartaghi M, Kahani M. Thermodynamic analysis of natural gas liquefaction process with propane pre-cooled mixed refrigerant process (C3MR) [J]. Cryogenics, 2019, 103: 102978.
23 IGU. IGU 2019 World LNG Report [R]. Barcelona: IGU, [2019-06-07]. https://igu.org/resources/igu-world-lng-report-2019/.
24 李泽伟, 周明亮, 杨磊, 等. 余热利用技术在陆梁油田的应用[J]. 油气田环境保护, 2015, 25(5): 49-51, 92.
Li Z W, Zhou M L, Yang L, et al. Application of waste heat utilization technology in Luliang oilfield [J]. Environmental Protection of Oil & Gas Fields, 2015, 25(5): 49-51, 92.
25 Franco A, Vaccaro M. A combined energetic and economic approach for the sustainable design of geothermal plants [J]. Energy Conversion and Management, 2014, 87: 735-745.
26 Varga Z, Csaba T. Techno-economic evaluation of waste heat recovery by organic Rankine cycle using pure light hydrocarbons and their mixtures as working fluid in a crude oil refinery [J]. Energy Conversion and Management, 2018, 174: 793-801.
27 Chan C W, Ling-Chin J, Roskilly A P. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation [J]. Applied Thermal Engineering, 2013, 50(1): 1257-1273.
28 Singh B K, Shrivastava N. Exhaust gas heat recovery for C. I. engine — a review [J]. IJESRT Journal, 2014, 4(5): 14-19.
29 Baccioli A, Antonelli M, Frigo S, et al. Small scale bio-LNG plant: comparison of different biogas upgrading techniques [J]. Applied Energy, 2018, 217: 328-335.
30 Lawal A O, Idem R O. Kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous MEA-MDEA blends during CO2 absorption from flue gas streams [J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2601-2607.
[1] 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077.
[2] 唐翠萍, 张雅楠, 梁德青, 李祥. 聚乙烯己内酰胺链端改性及其对甲烷水合物形成的抑制作用研究[J]. 化工学报, 2022, 73(5): 2130-2139.
[3] 吴子睿, 孙瑞, 石凌峰, 田华, 王轩, 舒歌群. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492.
[4] 闫帅, 杨家宝, 龚岩, 郭庆华, 于广锁. CO2稀释对甲烷反扩散火焰结构的影响研究[J]. 化工学报, 2022, 73(3): 1335-1342.
[5] 金科, 王晨光, 马隆龙, 张琦. 核壳纳米材料制备及其在CO/CO2热催化加氢中的应用[J]. 化工学报, 2022, 73(3): 990-1007.
[6] 王淋, 付乾, 肖帅, 李卓, 李俊, 张亮, 朱恂, 廖强. 高效可见光响应微生物/光电化学耦合人工光合作用系统[J]. 化工学报, 2022, 73(2): 887-893.
[7] 李沛昀, 李杨, 王文彬, 王文. 三角转子膨胀机在跨临界CO2制冷循环中的应用分析[J]. 化工学报, 2021, 72(S1): 161-169.
[8] 徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444.
[9] 刘增欣,王依军,郝春莲,刘秀萍. Zn/Cu单晶转换MOF材料的CO2/CH4分离性能研究[J]. 化工学报, 2021, 72(S1): 546-553.
[10] 谢晶, 舒歌平, 杨葛灵, 高山松, 王洪学, 卢晗锋, 陈银飞. Mo修饰的钼铁复合催化剂及其煤直接液化催化性能[J]. 化工学报, 2021, 72(9): 4675-4684.
[11] 方远鑫, 肖武, 姜晓滨, 李祥村, 贺高红, 吴雪梅. 膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟[J]. 化工学报, 2021, 72(9): 4740-4749.
[12] 耿晨旭, 孙玉绣, 黄宏亮, 郭翔宇, 乔志华, 仲崇立. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报, 2021, 72(9): 4750-4758.
[13] 赵林洲, 郑燕娥, 李孔斋, 王亚明, 蒋丽红, 范浩熙, 王雅静, 祝星, 魏永刚. Ce1-xNixOy氧载体在化学链甲烷重整耦合CO2还原中的应用[J]. 化工学报, 2021, 72(8): 4371-4380.
[14] 王宪, 赵延兴, 董学强, 陈晓刚, 公茂琼. 甲烷二元体系的固液相平衡预测[J]. 化工学报, 2021, 72(8): 4009-4018.
[15] 江鹏, 江锦波, 彭旭东, 孟祥铠, 马艺. 传热模型对近临界工况CO2干气密封温压分布和稳态性能影响[J]. 化工学报, 2021, 72(8): 4239-4254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!