化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2474-2485.DOI: 10.11949/0438-1157.20240114
收稿日期:
2024-01-25
修回日期:
2024-04-03
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
罗小平
作者简介:
罗小平(1967—),男,博士,教授,mmxpluo@scut.edu.cn
基金资助:
Xiaoping LUO(), Yuntian HOU, Yijie FAN
Received:
2024-01-25
Revised:
2024-04-03
Online:
2024-07-25
Published:
2024-08-09
Contact:
Xiaoping LUO
摘要:
为探究不同相分离结构参数对强化微细通道流动沸腾传热性能和均温性的影响,加工制作了带有不同相分离结构的平行逆流微细通道试验段,分别为相分离结构(PSS)位置不同的PSS-1(上下游均匀分布)、PSS-2(上下游靠近中部)和PSS-3(上下游靠近两端),其中PSS-1分为A、B、C三种,分别对应4孔、6孔、10孔。以乙醇为试验工质,在有效热通量为17.12~87.25 kW/m2、入口温度为70℃、质量流速为86.11 kg/(m2·s)的工况下,对截面为2 mm×2 mm的矩形微细通道开展流动沸腾试验,并利用高速摄影仪对通道进行可视化研究,通过引入传热强化因子和壁面温度标准差研究了不同相分离结构对强化微细通道传热性能和均温性的影响以及相分离结构在高压通道和低压通道内的强化机制。研究表明,传热强化效果随相分离排气孔数增加而提升,相分离结构位置对传热特性的影响在高压通道和低压通道内有所不同。PSS-1-C微细通道的温度均匀性最好,在热通量为83.11 kW/m2时微细通道平均壁面温度较无相分离相同通道降低了1.9℃,温度标准差降低了14.2%。可视化图像表明,相分离结构在压差作用下能实现气相转移,进而强化传热。
中图分类号:
罗小平, 侯云天, 范一杰. 逆流相分离结构微细通道流动沸腾传热与均温性[J]. 化工学报, 2024, 75(7): 2474-2485.
Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure[J]. CIESC Journal, 2024, 75(7): 2474-2485.
饱和温度 Tsat/℃ | 气相密度 ρg/(kg/m3) | 液相密度 ρl /(kg/m3) | 液体黏度 μl /(mPa·s) | 液体热导率 λl /(W/(m·K)) | 液体比热容 cp,l /(J/(kg·K)) | 汽化潜热 hfg/(J/kg) | 表面张力 γ/(mN/m) |
---|---|---|---|---|---|---|---|
78.34 | 1.59 | 785.05 | 0.0088 | 0.16 | 2420 | 847 | 19.20 |
表1 乙醇物性参数
Table 1 Physical parameters of ethanol
饱和温度 Tsat/℃ | 气相密度 ρg/(kg/m3) | 液相密度 ρl /(kg/m3) | 液体黏度 μl /(mPa·s) | 液体热导率 λl /(W/(m·K)) | 液体比热容 cp,l /(J/(kg·K)) | 汽化潜热 hfg/(J/kg) | 表面张力 γ/(mN/m) |
---|---|---|---|---|---|---|---|
78.34 | 1.59 | 785.05 | 0.0088 | 0.16 | 2420 | 847 | 19.20 |
参数 | 仪器设备 | 型号 | 量程 | 精度 |
---|---|---|---|---|
流量 | 浮子流量计 | LZB-4 | 1~10 L/h | 2.50% |
温度 | 热电阻 | PT-100 | 0~200℃ | 0.1℃ |
电压 | 直流高压静电发生器 | DW-P503 | 0~50 kV | 0.50% |
压力 | 压力传感器 | HY-131 | 0~100 kPa | 0.20% |
表2 直接测量误差
Table 2 Direct measurement error
参数 | 仪器设备 | 型号 | 量程 | 精度 |
---|---|---|---|---|
流量 | 浮子流量计 | LZB-4 | 1~10 L/h | 2.50% |
温度 | 热电阻 | PT-100 | 0~200℃ | 0.1℃ |
电压 | 直流高压静电发生器 | DW-P503 | 0~50 kV | 0.50% |
压力 | 压力传感器 | HY-131 | 0~100 kPa | 0.20% |
物理量 | 最大相对不确定度 |
---|---|
G | 2.50% |
Lsp | 2.76% |
qeff | 1.13% |
Tw | 0.2% |
h | 1.14% |
表3 间接物理量最大相对不确定度
Table 3 Maximum relative uncertainty of indirect physical quantities
物理量 | 最大相对不确定度 |
---|---|
G | 2.50% |
Lsp | 2.76% |
qeff | 1.13% |
Tw | 0.2% |
h | 1.14% |
1 | 江河, 袁俊飞, 王林, 等. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
Jiang H, Yuan J F, Wang L, et al. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels[J]. CIESC Journal, 2023, 74(S1): 235-244. | |
2 | Wang B, Hu Y W, He Y R, et al. Dynamic instabilities of flow boiling in micro-channels: a review[J]. Applied Thermal Engineering, 2022, 214: 118773. |
3 | 刘文竹, 云和明, 王宝雪, 等. 基于场协同和 耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
Liu W Z, Yun H M, Wang B X, et al. Research on topology optimization of microchannel based on field synergy and entransy dissipation[J]. CIESC Journal, 2023, 74(8): 3329-3341. | |
4 | 邬智宇, 张伟, 孙远志, 等. 微通道内流动沸腾强化换热研究进展[J]. 微纳电子技术, 2019, 56(2): 126-132. |
Wu Z Y, Zhang W, Sun Y Z, et al. Research progress on the flow boiling heat transfer enhancement in the microchannel[J]. Micronanoelectronic Technology, 2019, 56(2): 126-132. | |
5 | Rui Z L, Sun H, Ma J, et al. Experimental study and prediction on the thermal management performance of SDS aqueous solution based microchannel flow boiling system[J]. Energy, 2023, 282: 128747. |
6 | Mandev E, Manay E. Effects of surface roughness in multiple microchannels on mixed convective heat transfer[J]. Applied Thermal Engineering, 2022, 217: 119102. |
7 | Heidarian A, Rafee R, Valipour M S. Hydrodynamic analysis of the nanofluids flow in a microchannel with hydrophobic and superhydrophobic surfaces[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124: 266-275. |
8 | Li T F, Luo X P, He B L, et al. Flow boiling heat transfer enhancement in vertical minichannel heat sink with non-uniform microcavity arrays under electric field[J]. Experimental Thermal and Fluid Science, 2023, 149: 110997. |
9 | Saadatmand A, Goharkhah M, Nejad A M. Heat transfer enhancement in mini channel heat sinks utilizing corona wind: a numerical study[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121970. |
10 | Zhou J Y, Luo X P, He B L, et al. Comprehensive evaluation of graphene/R141b nanofluids enhanced heat transfer performance of minichannel heat sinks[J]. Powder Technology, 2022, 397: 116997. |
11 | Mohammed H I, Giddings D, Walker G S, et al. Thermal behaviour of the flow boiling of a complex nanofluid in a rectangular channel: an experimental and numerical study[J]. International Communications in Heat and Mass Transfer, 2020, 117: 104773. |
12 | Rahman M E, Weibel J A. Mapping the amplitude and frequency of pressure drop oscillations via a transient numerical model to assess their severity during microchannel flow boiling[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123065. |
13 | Kingston T A, Weibel J A, Garimella S V. High-frequency thermal-fluidic characterization of dynamic microchannel flow boiling instabilities (Part 1): Rapid-bubble-growth instability at the onset of boiling[J]. International Journal of Multiphase Flow, 2018, 106: 179-188. |
14 | Priy A, Raj S, Pathak M, et al. A hydrophobic porous substrate-based vapor venting technique for mitigating flow boiling instabilities in microchannel heat sink[J]. Applied Thermal Engineering, 2022, 216: 119138. |
15 | Mohiuddin A, Loganathan R, Gedupudi S. Experimental investigation of flow boiling in rectangular mini/micro-channels of different aspect ratios without and with vapour venting membrane[J]. Applied Thermal Engineering, 2020, 168: 114837. |
16 | Salakij S, Liburdy J A, Pence D V, et al. Modeling in situ vapor extraction during convective boiling in fractal-like branching microchannel networks[J]. International Journal of Heat and Mass Transfer, 2013, 60: 700-712. |
17 | Derami H G, Vundavilli R, Darabi J. Experimental and computational study of gas bubble removal in a microfluidic system using nanofibrous membranes[J]. Microsystem Technologies, 2017, 23(7): 2685-2698. |
18 | Meng D D, Kim J, Kim C J. A degassing plate with hydrophobic bubble capture and distributed venting for microfluidic devices[J]. Journal of Micromechanics and Microengineering, 2006, 16(2): 419-424. |
19 | 李中洲, 朱惠人. 超临界压力下航空煤油传热特性[J]. 推进技术, 2011, 32(2): 261-265. |
Li Z Z, Zhu H R. Heat transfer characteristics of kerosene in micro-channel under supercritical pressure[J]. Journal of Propulsion Technology, 2011, 32(2): 261-265. | |
20 | Xu G Q, Fu J, Quan Y K, et al. Experimental investigation on heat transfer characteristics of hexamethyldisiloxane (MM) at supercritical pressures for medium/high temperature ORC applications[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119852. |
21 | Kim D E, Kim M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. |
22 | Li Y, Wu H Y. Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122500. |
23 | Lee P S, Garimella S V. Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays[J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 789-806. |
24 | Barrer R. Surface and volume flow in porous media[J]. The Solid-Gas Interface, 1967, 2: 557-609. |
25 | Qu W L, Mudawar I. Flow boiling heat transfer in two-phase micro-channel heat sinks (Ⅰ): Experimental investigation and assessment of correlation methods[J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2755-2771. |
26 | Lee S, Mudawar I. Transient characteristics of flow boiling in large micro-channel heat exchangers[J]. International Journal of Heat and Mass Transfer, 2016, 103: 186-202. |
27 | Ho C J, Chang P C, Yan W M, et al. Comparative study on thermal performance of MEPCM suspensions in parallel and divergent minichannel heat sinks[J]. International Communications in Heat and Mass Transfer, 2018, 94: 96-105. |
28 | Hong S H, Tang Y L, Dang C B, et al. Experimental research of the critical geometric parameters on subcooled flow boiling in confined microchannels[J]. International Journal of Heat and Mass Transfer, 2018, 116: 73-83. |
29 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
30 | Liu Z H, Bi Q C. Onset and departure of flow boiling heat transfer characteristics of cyclohexane in a horizontal minichannel[J]. International Journal of Heat and Mass Transfer, 2015, 88: 398-405. |
31 | Jia Y T, Xia G D, Zong L X, et al. A comparative study of experimental flow boiling heat transfer and pressure drop characteristics in porous-wall microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2018, 127: 818-833. |
[1] | 杨锦蕊, 郑宏飞, 马兴龙, 金日辉, 梁深. 两级叠置式加湿除湿海水淡化装置性能研究[J]. 化工学报, 2024, 75(7): 2446-2454. |
[2] | 余清杰, 杨洪海, 刘玉浩, 方海洲, 何伟琪, 王军, 卢心诚. 脉动热管温度信号的小波分析及流型识别[J]. 化工学报, 2024, 75(7): 2497-2504. |
[3] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
[4] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[5] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[6] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[7] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[8] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[9] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[10] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[11] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
[12] | 陈思睿, 毕景良, 王雷, 李元媛, 陆规. 气液两相流流型特征无监督提取的卷积自编码器:机理及应用[J]. 化工学报, 2024, 75(3): 847-857. |
[13] | 邓志诚, 许世峰, 王淇冬, 王家瑞, 王斯民. 浸没燃烧处理高盐高化学需氧量废水过程与能耗分析[J]. 化工学报, 2024, 75(3): 1000-1008. |
[14] | 李乃良, 刘常松, 杜雪平, 张一帆, 韩东太. 基于Hurst指数的严重段塞流多尺度分形特性[J]. 化工学报, 2024, 75(2): 484-492. |
[15] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||