化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3232-3239.doi: 10.11949/0438-1157.20220184

• 能源和环境工程 • 上一篇    下一篇

木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响

黄丽菁(),黄继娇,李鹏辉,刘芷诺,蒋康杰,吴文娟()   

  1. 南京林业大学江苏省林业资源高效加工利用协同创新中心,江苏 南京 210037
  • 收稿日期:2022-02-09 修回日期:2022-04-28 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 吴文娟 E-mail:814316100@qq.com;wenjuanwu@njfu.edu.cn
  • 作者简介:黄丽菁(1997—),女,硕士研究生,814316100@qq.com
  • 基金资助:
    国家自然科学基金项目(31730106)

Hydroxypropyl sulfomethylation modification of lignin and its effect on cellulase hydrolysis

Lijing HUANG(),Jijiao HUANG,Penghui LI,Zhinuo LIU,Kangjie JIANG,Wenjuan WU()   

  1. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
  • Received:2022-02-09 Revised:2022-04-28 Published:2022-07-05 Online:2022-08-01
  • Contact: Wenjuan WU E-mail:814316100@qq.com;wenjuanwu@njfu.edu.cn

摘要:

通过两步法对木质素进行了羟丙基磺甲基化改性,研究了羟丙基磺甲基木质素对纤维素酶水解的影响及其与酶的相互作用机制。采用红外光谱、核磁氢谱、表面电荷测定、接触角测定等方法对改性木质素的结构和表面特性进行了表征;采用耗散型石英晶体微天平(quartz crystal microbalance with dissipation, QCM-D)研究了改性木质素对纤维素酶非生产性吸附的影响。结果表明:与未改性木质素相比,羟丙基磺甲基化改性封闭了酚羟基,引入了亲水性的磺酸基团。羟丙基磺甲基化木质素具有较高的表面负电性和较低的疏水性,减少了其对纤维素酶的非生产性吸附,从而提高了纤维素的酶水解效率。

关键词: 生物质, 木质素, 羟丙基化, 磺甲基化, 吸附, 纤维素酶水解

Abstract:

The hydroxypropyl sulfomethylated lignin was modified by a two-step method, and the effect of hydroxypropyl sulfomethyl lignin on cellulase hydrolysis and its interaction mechanism with the enzyme were studied. The structure and surface properties of modified lignin were characterized by infrared spectroscopy, proton nuclear magnetic resonance spectra, surface charge measurement and contact angle analysis. The non-productive adsorption of cellulases on the modified lignin were investigated by using quartz crystal microbalance with dissipation (QCM-D). The results showed that compared with unmodified lignin, hydroxypropylation and sulfomethylation could block the phenolic hydroxyl groups with introduction of hydrophilic sulfonic acid groups. The modified lignin had high surface electronegativity and low hydrophobicity, which led to the decrease in the non-productive adsorption capacity of cellulase thus promoting the efficiency of enzymatic hydrolysis of cellulose.

Key words: biomass, lignin, hydroxypropylation, sulfomethylation, adsorption, cellulose hydrolysis

中图分类号: 

  • TQ 35

图1

改性木质素的制备流程"

图2

改性木质素和木质素的红外光谱图"

图3

改性木质素和木质素的核磁氢谱图"

表1

木质素和羟丙基磺甲基木质素的表面特性"

样品元素组成/%酚羟基含量/(mmol/g)表面电荷/(mmol/g)
COS
木质素77.97±0.0321.65±0.010.38±0.025.28±0.21-0.33±0.04
羟丙基磺甲基木质素77.33±0.0321.89±0.020.78±0.050.36±0.01-0.58±0.02

图4

木质素(a)和羟丙基磺甲基木质素(b)的接触角"

图5

纤维素酶在木质素薄膜上的吸附"

表2

纤维素酶在木质素薄膜上的吸附参数"

样品-ΔFmax/Hz1/τ)/min-1R2最大吸附量/(ng/cm2不可逆吸附量/(ng/cm2解吸量/(ng/cm2
木质素膜57.810.0640.92341.1311.929.2
羟丙基磺甲基木质素膜50.590.0530.95298.5255.443.1

图6

纤维素酶在木质素薄膜吸附过程中ΔD随ΔF的变化"

图7

木质素对酶水解效率的影响"

1 Lai C H, Yang B, Lin Z H, et al. New strategy to elucidate the positive effects of extractable lignin on enzymatic hydrolysis by quartz crystal microbalance with dissipation[J]. Biotechnology for Biofuels, 2019, 12: 57.
2 Yuan Y F, Jiang B, Chen H, et al. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis[J]. Biotechnology for Biofuels, 2021, 14(1): 205.
3 Cheng L, Hu X H, Gu Z B, et al. Characterization of physicochemical properties of cellulose from potato pulp and their effects on enzymatic hydrolysis by cellulase[J]. International Journal of Biological Macromolecules, 2019, 131: 564-571.
4 Li X, Zheng Y. Lignin-enzyme interaction: mechanism, mitigation approach, modeling, and research prospects[J]. Biotechnology Advances, 2017, 35(4): 466-489.
5 Sheng Y Q, Lam S S, Wu Y J, et al. Enzymatic conversion of pretreated lignocellulosic biomass: a review on influence of structural changes of lignin[J]. Bioresource Technology, 2021, 324: 124631.
6 Djajadi D T, Jensen M M, Oliveira M, et al. Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes[J]. Biotechnology for Biofuels, 2018, 11: 85.
7 Li X, Li M, Pu Y Q, et al. Inhibitory effects of lignin on enzymatic hydrolysis: the role of lignin chemistry and molecular weight[J]. Renewable Energy, 2018, 123: 664-674.
8 Ponnusamy V K, Nguyen D D, Dharmaraja J, et al. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential[J]. Bioresource Technology, 2019, 271: 462-472.
9 Pan X J. Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose[J]. Journal of Biobased Materials and Bioenergy, 2008, 2(1): 25-32.
10 赵存异, 应文俊, 史正军, 等. 羟丙基化碱木质素的制备及其对纤维素酶水解的影响[J]. 林产化学与工业, 2019, 39(2): 109-114.
Zhao C Y, Ying W J, Shi Z J, et al. Preparation of hydroxypropylated alkali lignin and its effect on hydrolysis efficiency of cellulase[J]. Chemistry and Industry of Forest Products, 2019, 39(2): 109-114.
11 Nakagame S, Chandra R P, Kadla J F, et al. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin[J]. Biotechnology and Bioengineering, 2011, 108(3): 538-548.
12 Yang Q, Pan X J. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose[J]. Biotechnology and Bioengineering, 2016, 113( 6): 1213-1224.
13 金永灿, 陈慧, 吴文娟,等.水溶性木质素对纤维原料酶水解的影响研究进展[J]. 林业工程学报, 2020, 5(4): 12-19.
Jin Y C, Chen H, Wu W J, et al. Investigations of the effect of water-soluble lignin on enzymatic hydrolysis of lignocellulose[J]. Journal of Forestry Engineering, 2020, 5(4): 12-19.
14 Wu J, Chandra R P, Takada M, et al. Enhancing enzyme-mediated cellulose hydrolysis by incorporating acid groups onto the lignin during biomass pretreatment[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 608835.
15 Zheng W Q, Lan T Q, Li H, et al. Exploring why sodium lignosulfonate influenced enzymatic hydrolysis efficiency of cellulose from the perspective of substrate-enzyme adsorption[J]. Biotechnology for Biofuels, 2020, 13: 19.
16 梁文学, 邱学青, 杨东杰, 等. 麦草碱木质素的氧化和磺甲基化改性[J]. 华南理工大学学报(自然科学版), 2007, 35(5): 117-121.
Liang W X, Qiu X Q, Yang D J, et al. Modificaion of wheat straw alkali lignin by oxidation and sulfomethylation[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(5): 117-121.
17 Filipe D S, Anders R. Estimating the amount of phenolic hydroxyl groups in lignins[C]// Proceedings of 11th ISWPC. Nice, France, 2001.
18 Rahikainen J L, Evans J D, Mikander S, et al. Cellulase-lignin interactions—the role of carbohydrate-binding module and pH in non-productive binding[J]. Enzyme and Microbial Technology, 2013, 53(5): 315-321.
19 Nada A A M A, El-Sakhawy M, Kamel S M. Infra-red spectroscopic study of lignins[J]. Polymer Degradation and Stability, 1998, 60(2/3): 247-251.
20 麻秀星. 木质素磺酸钠减水剂改性实验研究[J]. 福建建筑, 2010(1): 123-124, 134.
Ma X X. The modified research of the sodium lignosulfonate water-reducer[J]. Fujian Architecture & Construction, 2010(1): 123-124, 134.
21 Busse-Wicher M, Gomes T C F, Tryfona T, et al. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana [J]. The Plant Journal, 2014, 79(3): 492-506.
22 Xu C, Zhang J, Zhang Y, et al. Lignin prepared from different alkaline pretreated sugarcane bagasse and its effect on enzymatic hydrolysis[J]. International Journal of Biological Macromolecules, 2019, 141: 484-492.
23 赖玉荣, 张曾, 黄干强, 等. FC法测定木素和纸浆中的酚羟基[J]. 中国造纸学报, 2007, 22(1): 54-58.
Lai Y R, Zhang Z, Huang G Q, et al. Determination of the content of phenolic hydroxyl groups in lignin and pulp with FC-method[J]. Transactions of China Pulp and Paper, 2007, 22(1): 54-58.
24 Mou H Y, Wu X, Huang J, et al. Eucalyptus lignin modification for dynamic adsorption with lignocellulose-degradation enzymes dependent on pH values[J]. Industrial Crops and Products, 2021, 169: 113650.
25 Nakagame S, Chandra R P, Saddler J N. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis[J]. Biotechnology and Bioengineering, 2010, 105(5): 871-879.
26 Yu H L, Xu Y Q, Ni Y H, et al. Enhanced enzymatic hydrolysis of cellulose from waste paper fibers by cationic polymers addition[J]. Carbohydrate Polymers, 2018, 200: 248-254.
27 Song Y L, Chandra R P, Zhang X, et al. Non-productive celluase binding onto deep eutectic solvent (DES) extracted lignin from willow and corn stover with inhibitory effects on enzymatic hydrolysis of cellulose[J]. Carbohydrate Polymers, 2020, 250: 116956.
28 Zhang Y Q, Jiang X, Wan S Q, et al. Adsorption behavior of two glucanases on three lignins and the effect by adding sulfonated lignin[J]. Journal of Biotechnology, 2020, 323: 1-8.
29 Chen X M, Ma Y, Gui Q W, et al. An antifouling polymer for dynamic anti-protein adhesion analysis by a quartz crystal microbalance[J]. The Analyst, 2021, 146(14): 4636-4641.
30 Qi P J, Xu Z W, Zhou T T, et al. Study on a quartz crystal microbalance sensor based on chitosan-functionalized mesoporous silica for humidity detection[J]. Journal of Colloid and Interface Science, 2021, 583: 340-350.
31 Agrawal R, Verma A, Singhania R R, et al. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis[J]. Bioresource Technology, 2021, 332: 125042.
32 Chen G Q, Song W J, Qi B K, et al. Recycling cellulase from enzymatic hydrolyzate of acid treated wheat straw by electroultrafiltration[J]. Bioresource Technology, 2013, 144: 186-193.
33 Sun S L, Huang Y, Sun R C, et al. The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis[J]. Green Chemistry, 2016, 18(15): 4276-4286.
34 Li Y, Qi B K, Luo J Q, et al. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis[J]. Bioresource Technology, 2016, 200: 272-278.
35 Mou H Y, Wu S B, He M Y, et al. Study of the difference between enzyme adsorption onto hydrotropic and alkali lignin separated from eucalyptus and bamboo[J]. BioResources, 2018, 13(1): 1441-1456.
36 Yuan Y F, Jiang B, Chen H, et al. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis[J]. Biotechnology for Biofuels, 2021, 14(1): 205.
37 Yu H L, Hou J J, Yu S T, et al. Comprehensive understanding of the non-productive adsorption of cellulolytic enzymes onto lignins isolated from furfural residues[J]. Cellulose, 2019, 26(5): 3111-3125.
38 Huang Y, Sun S L, Huang C, et al. Stimulation and inhibition of enzymatic hydrolysis by organosolv lignins as determined by zeta potential and hydrophobicity[J]. Biotechnology for Biofuels, 2017, 10: 162.
39 Lin X L, Wu L J, Huang S Q, et al. Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose[J]. Carbohydrate Polymers, 2019, 207: 52-58.
40 Rodahl M, Höök F, Krozer A, et al. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments[J]. Review of Scientific Instruments, 1995, 66(7): 3924-3930.
41 Min D Y, Yang C M, Shi R, et al. The elucidation of the lignin structure effect on the cellulase-mediated saccharification by genetic engineering poplars (Populus nigra L.×Populus maximowiczii A.)[J]. Biomass and Bioenergy, 2013, 58: 52-57.
42 Li H J, Pu Y Q, Kumar R, et al. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms[J]. Biotechnology and Bioengineering, 2014, 111(3): 485-492.
43 Xu C, Liu F, Alam M A, et al. Comparative study on the properties of lignin isolated from different pretreated sugarcane bagasse and its inhibitory effects on enzymatic hydrolysis[J]. International Journal of Biological Macromolecules, 2020, 146: 132-140.
[1] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[2] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[3] 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006.
[4] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[5] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[6] 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907.
[7] 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278.
[8] 王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221.
[9] 刘碧强, 曹海山. 基于流量校准的吸附测量方法及误差分析[J]. 化工学报, 2022, 73(4): 1597-1605.
[10] 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825.
[11] 王毅, 熊启钊, 陈杨, 杨江峰, 李立博, 李晋平. 锆基金属有机骨架材料用于氨吸附性能的研究[J]. 化工学报, 2022, 73(4): 1772-1780.
[12] 张浩, 赵宇, 徐志明, 李晋辉. 羧甲基葡聚糖的快速沉降法阻垢特性研究[J]. 化工学报, 2022, 73(4): 1515-1522.
[13] 欧阳志鹏, 刘庭峰, 冷尔唯, 冯天毅, 曾建辉, 龚勋. 纤维素低氧环境下热解特性和糖类生成机制[J]. 化工学报, 2022, 73(3): 1351-1358.
[14] 袁聪, 蒲舸, 高杰, 贾帅辉. 改性BaFe2O4载氧体生物质化学链气化特性[J]. 化工学报, 2022, 73(3): 1359-1368.
[15] 叶茂林, 谭烽华, 李宇萍, 廖玉河, 王晨光, 马隆龙. 农林废弃物气化合成混合醇生命周期环境影响分析[J]. 化工学报, 2022, 73(3): 1369-1378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!