化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3232-3239.DOI: 10.11949/0438-1157.20220184
收稿日期:
2022-02-09
修回日期:
2022-04-28
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
吴文娟
作者简介:
黄丽菁(1997—),女,硕士研究生,基金资助:
Lijing HUANG(),Jijiao HUANG,Penghui LI,Zhinuo LIU,Kangjie JIANG,Wenjuan WU()
Received:
2022-02-09
Revised:
2022-04-28
Online:
2022-07-05
Published:
2022-08-01
Contact:
Wenjuan WU
摘要:
通过两步法对木质素进行了羟丙基磺甲基化改性,研究了羟丙基磺甲基木质素对纤维素酶水解的影响及其与酶的相互作用机制。采用红外光谱、核磁氢谱、表面电荷测定、接触角测定等方法对改性木质素的结构和表面特性进行了表征;采用耗散型石英晶体微天平(quartz crystal microbalance with dissipation, QCM-D)研究了改性木质素对纤维素酶非生产性吸附的影响。结果表明:与未改性木质素相比,羟丙基磺甲基化改性封闭了酚羟基,引入了亲水性的磺酸基团。羟丙基磺甲基化木质素具有较高的表面负电性和较低的疏水性,减少了其对纤维素酶的非生产性吸附,从而提高了纤维素的酶水解效率。
中图分类号:
黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
Lijing HUANG, Jijiao HUANG, Penghui LI, Zhinuo LIU, Kangjie JIANG, Wenjuan WU. Hydroxypropyl sulfomethylation modification of lignin and its effect on cellulase hydrolysis[J]. CIESC Journal, 2022, 73(7): 3232-3239.
样品 | 元素组成/% | 酚羟基含量/(mmol/g) | 表面电荷/(mmol/g) | ||
---|---|---|---|---|---|
C | O | S | |||
木质素 | 77.97±0.03 | 21.65±0.01 | 0.38±0.02 | 5.28±0.21 | -0.33±0.04 |
羟丙基磺甲基木质素 | 77.33±0.03 | 21.89±0.02 | 0.78±0.05 | 0.36±0.01 | -0.58±0.02 |
表1 木质素和羟丙基磺甲基木质素的表面特性
Table 1 Surface properties of lignin and hydroxypropyl sulfonmethyl lignin
样品 | 元素组成/% | 酚羟基含量/(mmol/g) | 表面电荷/(mmol/g) | ||
---|---|---|---|---|---|
C | O | S | |||
木质素 | 77.97±0.03 | 21.65±0.01 | 0.38±0.02 | 5.28±0.21 | -0.33±0.04 |
羟丙基磺甲基木质素 | 77.33±0.03 | 21.89±0.02 | 0.78±0.05 | 0.36±0.01 | -0.58±0.02 |
样品 | ( | R2 | 最大吸附量/(ng/cm2) | 不可逆吸附量/(ng/cm2) | 解吸量/(ng/cm2) | |
---|---|---|---|---|---|---|
木质素膜 | 57.81 | 0.064 | 0.92 | 341.1 | 311.9 | 29.2 |
羟丙基磺甲基木质素膜 | 50.59 | 0.053 | 0.95 | 298.5 | 255.4 | 43.1 |
表2 纤维素酶在木质素薄膜上的吸附参数
Table 2 Adsorption parameters of cellulase on lignin films
样品 | ( | R2 | 最大吸附量/(ng/cm2) | 不可逆吸附量/(ng/cm2) | 解吸量/(ng/cm2) | |
---|---|---|---|---|---|---|
木质素膜 | 57.81 | 0.064 | 0.92 | 341.1 | 311.9 | 29.2 |
羟丙基磺甲基木质素膜 | 50.59 | 0.053 | 0.95 | 298.5 | 255.4 | 43.1 |
1 | Lai C H, Yang B, Lin Z H, et al. New strategy to elucidate the positive effects of extractable lignin on enzymatic hydrolysis by quartz crystal microbalance with dissipation[J]. Biotechnology for Biofuels, 2019, 12: 57. |
2 | Yuan Y F, Jiang B, Chen H, et al. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis[J]. Biotechnology for Biofuels, 2021, 14(1): 205. |
3 | Cheng L, Hu X H, Gu Z B, et al. Characterization of physicochemical properties of cellulose from potato pulp and their effects on enzymatic hydrolysis by cellulase[J]. International Journal of Biological Macromolecules, 2019, 131: 564-571. |
4 | Li X, Zheng Y. Lignin-enzyme interaction: mechanism, mitigation approach, modeling, and research prospects[J]. Biotechnology Advances, 2017, 35(4): 466-489. |
5 | Sheng Y Q, Lam S S, Wu Y J, et al. Enzymatic conversion of pretreated lignocellulosic biomass: a review on influence of structural changes of lignin[J]. Bioresource Technology, 2021, 324: 124631. |
6 | Djajadi D T, Jensen M M, Oliveira M, et al. Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes[J]. Biotechnology for Biofuels, 2018, 11: 85. |
7 | Li X, Li M, Pu Y Q, et al. Inhibitory effects of lignin on enzymatic hydrolysis: the role of lignin chemistry and molecular weight[J]. Renewable Energy, 2018, 123: 664-674. |
8 | Ponnusamy V K, Nguyen D D, Dharmaraja J, et al. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential[J]. Bioresource Technology, 2019, 271: 462-472. |
9 | Pan X J. Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose[J]. Journal of Biobased Materials and Bioenergy, 2008, 2(1): 25-32. |
10 | 赵存异, 应文俊, 史正军, 等. 羟丙基化碱木质素的制备及其对纤维素酶水解的影响[J]. 林产化学与工业, 2019, 39(2): 109-114. |
Zhao C Y, Ying W J, Shi Z J, et al. Preparation of hydroxypropylated alkali lignin and its effect on hydrolysis efficiency of cellulase[J]. Chemistry and Industry of Forest Products, 2019, 39(2): 109-114. | |
11 | Nakagame S, Chandra R P, Kadla J F, et al. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin[J]. Biotechnology and Bioengineering, 2011, 108(3): 538-548. |
12 | Yang Q, Pan X J. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose[J]. Biotechnology and Bioengineering, 2016, 113( 6): 1213-1224. |
13 | 金永灿, 陈慧, 吴文娟,等.水溶性木质素对纤维原料酶水解的影响研究进展[J]. 林业工程学报, 2020, 5(4): 12-19. |
Jin Y C, Chen H, Wu W J, et al. Investigations of the effect of water-soluble lignin on enzymatic hydrolysis of lignocellulose[J]. Journal of Forestry Engineering, 2020, 5(4): 12-19. | |
14 | Wu J, Chandra R P, Takada M, et al. Enhancing enzyme-mediated cellulose hydrolysis by incorporating acid groups onto the lignin during biomass pretreatment[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 608835. |
15 | Zheng W Q, Lan T Q, Li H, et al. Exploring why sodium lignosulfonate influenced enzymatic hydrolysis efficiency of cellulose from the perspective of substrate-enzyme adsorption[J]. Biotechnology for Biofuels, 2020, 13: 19. |
16 | 梁文学, 邱学青, 杨东杰, 等. 麦草碱木质素的氧化和磺甲基化改性[J]. 华南理工大学学报(自然科学版), 2007, 35(5): 117-121. |
Liang W X, Qiu X Q, Yang D J, et al. Modificaion of wheat straw alkali lignin by oxidation and sulfomethylation[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(5): 117-121. | |
17 | Filipe D S, Anders R. Estimating the amount of phenolic hydroxyl groups in lignins[C]// Proceedings of 11th ISWPC. Nice, France, 2001. |
18 | Rahikainen J L, Evans J D, Mikander S, et al. Cellulase-lignin interactions—the role of carbohydrate-binding module and pH in non-productive binding[J]. Enzyme and Microbial Technology, 2013, 53(5): 315-321. |
19 | Nada A A M A, El-Sakhawy M, Kamel S M. Infra-red spectroscopic study of lignins[J]. Polymer Degradation and Stability, 1998, 60(2/3): 247-251. |
20 | 麻秀星. 木质素磺酸钠减水剂改性实验研究[J]. 福建建筑, 2010(1): 123-124, 134. |
Ma X X. The modified research of the sodium lignosulfonate water-reducer[J]. Fujian Architecture & Construction, 2010(1): 123-124, 134. | |
21 | Busse-Wicher M, Gomes T C F, Tryfona T, et al. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana [J]. The Plant Journal, 2014, 79(3): 492-506. |
22 | Xu C, Zhang J, Zhang Y, et al. Lignin prepared from different alkaline pretreated sugarcane bagasse and its effect on enzymatic hydrolysis[J]. International Journal of Biological Macromolecules, 2019, 141: 484-492. |
23 | 赖玉荣, 张曾, 黄干强, 等. FC法测定木素和纸浆中的酚羟基[J]. 中国造纸学报, 2007, 22(1): 54-58. |
Lai Y R, Zhang Z, Huang G Q, et al. Determination of the content of phenolic hydroxyl groups in lignin and pulp with FC-method[J]. Transactions of China Pulp and Paper, 2007, 22(1): 54-58. | |
24 | Mou H Y, Wu X, Huang J, et al. Eucalyptus lignin modification for dynamic adsorption with lignocellulose-degradation enzymes dependent on pH values[J]. Industrial Crops and Products, 2021, 169: 113650. |
25 | Nakagame S, Chandra R P, Saddler J N. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis[J]. Biotechnology and Bioengineering, 2010, 105(5): 871-879. |
26 | Yu H L, Xu Y Q, Ni Y H, et al. Enhanced enzymatic hydrolysis of cellulose from waste paper fibers by cationic polymers addition[J]. Carbohydrate Polymers, 2018, 200: 248-254. |
27 | Song Y L, Chandra R P, Zhang X, et al. Non-productive celluase binding onto deep eutectic solvent (DES) extracted lignin from willow and corn stover with inhibitory effects on enzymatic hydrolysis of cellulose[J]. Carbohydrate Polymers, 2020, 250: 116956. |
28 | Zhang Y Q, Jiang X, Wan S Q, et al. Adsorption behavior of two glucanases on three lignins and the effect by adding sulfonated lignin[J]. Journal of Biotechnology, 2020, 323: 1-8. |
29 | Chen X M, Ma Y, Gui Q W, et al. An antifouling polymer for dynamic anti-protein adhesion analysis by a quartz crystal microbalance[J]. The Analyst, 2021, 146(14): 4636-4641. |
30 | Qi P J, Xu Z W, Zhou T T, et al. Study on a quartz crystal microbalance sensor based on chitosan-functionalized mesoporous silica for humidity detection[J]. Journal of Colloid and Interface Science, 2021, 583: 340-350. |
31 | Agrawal R, Verma A, Singhania R R, et al. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis[J]. Bioresource Technology, 2021, 332: 125042. |
32 | Chen G Q, Song W J, Qi B K, et al. Recycling cellulase from enzymatic hydrolyzate of acid treated wheat straw by electroultrafiltration[J]. Bioresource Technology, 2013, 144: 186-193. |
33 | Sun S L, Huang Y, Sun R C, et al. The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis[J]. Green Chemistry, 2016, 18(15): 4276-4286. |
34 | Li Y, Qi B K, Luo J Q, et al. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis[J]. Bioresource Technology, 2016, 200: 272-278. |
35 | Mou H Y, Wu S B, He M Y, et al. Study of the difference between enzyme adsorption onto hydrotropic and alkali lignin separated from eucalyptus and bamboo[J]. BioResources, 2018, 13(1): 1441-1456. |
36 | Yuan Y F, Jiang B, Chen H, et al. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis[J]. Biotechnology for Biofuels, 2021, 14(1): 205. |
37 | Yu H L, Hou J J, Yu S T, et al. Comprehensive understanding of the non-productive adsorption of cellulolytic enzymes onto lignins isolated from furfural residues[J]. Cellulose, 2019, 26(5): 3111-3125. |
38 | Huang Y, Sun S L, Huang C, et al. Stimulation and inhibition of enzymatic hydrolysis by organosolv lignins as determined by zeta potential and hydrophobicity[J]. Biotechnology for Biofuels, 2017, 10: 162. |
39 | Lin X L, Wu L J, Huang S Q, et al. Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose[J]. Carbohydrate Polymers, 2019, 207: 52-58. |
40 | Rodahl M, Höök F, Krozer A, et al. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments[J]. Review of Scientific Instruments, 1995, 66(7): 3924-3930. |
41 | Min D Y, Yang C M, Shi R, et al. The elucidation of the lignin structure effect on the cellulase-mediated saccharification by genetic engineering poplars (Populus nigra L.×Populus maximowiczii A.)[J]. Biomass and Bioenergy, 2013, 58: 52-57. |
42 | Li H J, Pu Y Q, Kumar R, et al. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms[J]. Biotechnology and Bioengineering, 2014, 111(3): 485-492. |
43 | Xu C, Liu F, Alam M A, et al. Comparative study on the properties of lignin isolated from different pretreated sugarcane bagasse and its inhibitory effects on enzymatic hydrolysis[J]. International Journal of Biological Macromolecules, 2020, 146: 132-140. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[5] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[6] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[11] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[12] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[13] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[14] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[15] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 358
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||