化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1455-1471.DOI: 10.11949/0438-1157.20211369

• 综述与专论 • 上一篇    下一篇

高氧离子电导钙钛矿的影响因素分析和设计策略

李文怀(),周嵬()   

  1. 南京工业大学化工学院,江苏 南京 211800
    南京工业大学材料化学工程国家重点实验室,江苏 南京 211800
  • 收稿日期:2021-09-23 修回日期:2022-01-26 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 周嵬
  • 作者简介:李文怀(1997—),男,博士研究生,wenhuaili@njtech.edu.cn

Analysis of influencing factors and design strategies of high oxygen ion conductivity perovskite

Wenhuai LI(),Wei ZHOU()   

  1. College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, Jiangsu, China
    State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, Jiangsu, China
  • Received:2021-09-23 Revised:2022-01-26 Online:2022-04-05 Published:2022-04-25
  • Contact: Wei ZHOU

摘要:

氧离子导体,如钙钛矿氧化物(ABO3结构),广泛应用于燃料电池、氧传感器和透氧膜,提高钙钛矿氧化物的体相氧离子传输性能是提升这些设备工作效率的关键。钙钛矿氧离子的传输性能受到晶体结构、A/B位阳离子、阴离子及氧空位等复杂因素的影响,这为开发具有高氧离子电导的钙钛矿材料带来了极大的挑战。本文首先分析了氧离子在钙钛矿体相的传输机制,总结了常见的钙钛矿体相氧传输性能影响因素,包括晶体结构、平均金属-氧键能、氧空位浓度以及氧空位分布等,重点分析了这些影响因素作用于钙钛矿体相氧传输过程的方式和机理,并剖析了调控这些影响因素的手段以及原理。之后进一步阐明了钙钛矿氧传输性能的预测方法及相应的验证手段,如O2程序升温脱附、X射线吸收谱、高倍率透射电子显微镜和模拟计算等。通过实验直接观测材料内部微观性质,结合模拟计算可以进一步帮助理解钙钛矿氧化物体相氧离子传输过程。本文旨在寻找更加准确和便捷的设计策略,从而快速地筛选高氧离子电导的钙钛矿氧化物。

关键词: 钙钛矿氧化物, 氧离子扩散, 氧迁移能垒, 燃料电池, 透氧膜

Abstract:

Oxygen conductor, such as perovskite oxide (ABO3-type), are widely applied to fuel cell, oxygen sensors and oxygen permeable membranes. Improving the oxygen transport performance within perovskite oxide lattice is the key to increasing the efficiency of the oxygen conductor equipment. The transport performance of perovskite oxygen ions is affected by complex factors such as crystal structure, A/B site ions, anions and oxygen vacancies, which brings great challenges to the development of perovskite materials with high oxygen ion conductivity. This article first analyzes the mechanism of oxygen transport in the perovskite, and summarizes in detail the common factors that control the oxygen transport in the perovskite, including the crystal structure, the concentration of oxygen vacancies and the distribution of oxygen vacancies. Then focus on the analysis of the way and mechanism of these influencing factors on the oxygen transport process of the perovskite, and introduces the simple means and principles of regulating these influencing factors. This article further clarifies the prediction method for the oxygen transport performance of perovskite and the corresponding characterization method, such as O2-temperature programmed desorption, X-ray absorption spectroscopy, high-resolution transmission electron microscopy and theoretical calculations. Combining theoretical calculations and experimental results, we can directly observe the internal microscopic properties of the material to promote the understanding of the oxygen ion transport process of the perovskite oxide. This paper aims to find a more accurate and convenient design strategy to rapidly screen perovskite oxides with high oxygen ion conductance.

Key words: perovskite oxide, oxygen ion diffusion, oxygen mobility barrier, fuel cells, oxygen permeable membrane

中图分类号: