化工学报 ›› 2023, Vol. 74 ›› Issue (7): 3116-3126.DOI: 10.11949/0438-1157.20230015
收稿日期:
2023-01-06
修回日期:
2023-06-29
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
李文翠
作者简介:
张蒙蒙(1997—),女,硕士研究生,mengzhang08@163.com
基金资助:
Mengmeng ZHANG(), Dong YAN, Yongfeng SHEN, Wencui LI()
Received:
2023-01-06
Revised:
2023-06-29
Online:
2023-07-05
Published:
2023-08-31
Contact:
Wencui LI
摘要:
双离子电池是一种阴阳离子同时参与能量储存过程的新型电池,具有工作电压高、成本低、环境友好等优点。但正极高电压特性会引起电解液氧化分解。通过调节电解液浓度和溶剂组成系统地考察了电解液类型对
中图分类号:
张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126.
Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries[J]. CIESC Journal, 2023, 74(7): 3116-3126.
表1 NG和PSC样品的石墨微晶参数和比表面积
Table 1 Graphite microcrystalline parameters and specific surface area of NG and SC samples
图2 4 mol·L-1 LiPF6-EMC、1 mol·L-1 LiPF6-EMC和1 mol·L-1 LiPF6-EC/EMC(3∶7)三种电解液中NG和PSC正极在0.2 A·g-1电流密度下的恒流充放电曲线
Fig.2 GCD curves at 0.2 A·g-1 of NG and PSC cathodes in 4 mol·L-1 LiPF6-EMC, 1 mol·L-1 LiPF6-EMC and 1 mol·L-1 LiPF6-EC/EMC(3∶7) electrolytes
图3 4 mol·L-1 LiPF6-EMC、1 mol·L-1 LiPF6-EMC和1 mol·L-1 LiPF6-EC/EMC(3∶7)三种电解液中NG和PSC正极的倍率性能
Fig.3 Rate performance of NG and PSC cathodes in 4 mol·L-1 LiPF6-EMC, 1 mol·L-1 LiPF6-EMC and 1 mol·L-1 LiPF6-EC/EMC(3∶7) electrolytes
表2 NG正极在不同电解液中的电化学阻抗谱拟合结果
Table 2 The fitting results of Nyquist plots for NG cathode in different electrolytes
图6 4 mol·L-1 LiPF6-EMC、1 mol·L-1 LiPF6-EMC和1 mol·L-1 LiPF6-EC/EMC(3∶7)三种电解液中NG和PSC负极在0.2 A·g-1电流密度下的恒流充放电曲线
Fig.6 GCD curves at 0.2 A·g-1 of NG and PSC anodes in 4 mol·L-1 LiPF6-EMC, 1 mol·L-1 LiPF6-EMC and 1 mol·L-1 LiPF6-EC/EMC(3∶7) electrolytes
图7 4 mol·L-1 LiPF6-EMC、1 mol·L-1 LiPF6-EMC和1 mol·L-1 LiPF6-EC/EMC(3∶7)三种电解液中NG和PSC负极的倍率性能
Fig.7 Rate performance of NG and PSC anodes in 4 mol·L-1 LiPF6-EMC, 1 mol·L-1 LiPF6-EMC and 1 mol·L-1 LiPF6-EC/EMC(3∶7) electrolytes
1 | Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
2 | Liang G M, Wu Z B, Didier C, et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping[J]. Angewandte Chemie International Edition, 2020, 59(26): 10594-10602. |
3 | Wang G, Yu M H, Feng X L. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews, 2021, 50(4): 2388-2443. |
4 | Manthiram A. An outlook on lithium ion battery technology[J]. ACS Central Science, 2017, 3(10): 1063-1069. |
5 | Tang Y X, Zhang Y Y, Li W L, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews, 2015, 44(17): 5926-5940. |
6 | Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
7 | Xia J L, Lu A H, Yu X F, et al. Rational design of a trifunctional binder for hard carbon anodes showing high initial coulombic efficiency and superior rate capability for sodium-ion batteries[J]. Advanced Functional Materials, 2021, 31(40): 2104137. |
8 | Wu X S, Dong X L, Wang B Y, et al. Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors[J]. Renewable Energy, 2022, 189: 630-638. |
9 | Jian Z L, Luo W, Ji X L. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569. |
10 | Zhang W C, Pang W K, Sencadas V, et al. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries[J]. Joule, 2018, 2(8): 1534-1547. |
11 | Seh Z W, Sun Y M, Zhang Q F, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20): 5605-5634. |
12 | Yang H J, Qiao Y, Chang Z, et al. Designing cation-solvent fully coordinated electrolyte for high-energy-density lithium-sulfur full cell based on solid-solid conversion[J]. Angewandte Chemie International Edition, 2021, 60(32): 17726-17734. |
13 | Read J A, Cresce A V, Ervin M H, et al. Dual-graphite chemistry enabled by a high voltage electrolyte[J]. Energy & Environmental Science, 2014, 7(2): 617-620. |
14 | Ji B F, Zhang F, Wu N Z, et al. A dual-carbon battery based on potassium-ion electrolyte[J]. Advanced Energy Materials, 2017, 7(20): 1700920. |
15 | Zhou X L, Liu Q R, Jiang C L, et al. Strategies towards low-cost dual-ion batteries with high performance[J]. Angewandte Chemie International Edition, 2020, 59(10): 3802-3832. |
16 | Kravchyk K V, Kovalenko M V. Rechargeable dual-ion batteries with graphite as a cathode: key challenges and opportunities[J]. Advanced Energy Materials, 2019, 9(35): 1901749. |
17 | Hu Z, Liu Q N, Zhang K, et al. All carbon dual ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 35978-35983. |
18 | Yang H, Shi X Y, Deng T, et al. Carbon-based dual-ion battery with enhanced capacity and cycling stability[J]. ChemElectroChem, 2018, 5(23): 3612-3618. |
19 | Märkle W, Tran N, Goers D, et al. The influence of electrolyte and graphite type on the P F 6 - intercalation behaviour at high potentials[J]. Carbon, 2009, 47(11): 2727-2732. |
20 | Li W H, Ning Q L, Xi X T, et al. Highly improved cycling stability of anion de-/ intercalation in the graphite cathode for dual-ion batteries[J]. Advanced Materials, 2019, 31(4): 1804766. |
21 | Sui Y M, Liu C F, Masse R C, et al. Dual-ion batteries: the emerging alternative rechargeable batteries[J]. Energy Storage Materials, 2020, 25: 1-32. |
22 | Kravchyk K V, Bhauriyal P, Piveteau L, et al. High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide[J]. Nature Communications, 2018, 9: 4469. |
23 | Li X A, Ou X W, Tang Y B. 6.0 V high-voltage and concentrated electrolyte toward high energy density K-based dual-graphite battery[J]. Advanced Energy Materials, 2020, 10(41): 2002567. |
24 | Zhang L, Wang H Y. Intercalation of multiply solvated hexafluorophospate anion into graphite electrode from mixtures of methyl acetate, ethyl methyl and ethylene carbonates[J]. Journal of Energy Chemistry, 2021, 58: 233-236. |
25 | Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742. |
26 | Ferrari A C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1/2): 47-57. |
27 | He B, Li W C, Yang C, et al. Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: an electrolysis approach[J]. ACS Nano, 2016, 10(1): 1633-1639. |
28 | 朱丹丹. 溶剂化六氟磷酸根阴离子在石墨电极中的存储行为[D]. 合肥: 中国科学技术大学, 2021. |
Zhu D D. Storage behavior of solvated hexafluorophosphate anion in graphite electrode[D]. Hefei: University of Science and Technology of China, 2021. | |
29 | Heckmann A, Thienenkamp J, Beltrop K, et al. Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes[J]. Electrochimica Acta, 2018, 260: 514-525. |
30 | Li W H, Liang H J, Hou X K, et al. Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery[J]. Journal of Energy Chemistry, 2020, 50: 416-423. |
31 | Yang S J, Yao N, Xu X Q, et al. Formation mechanism of the solid electrolyte interphase in different ester electrolytes[J]. Journal of Materials Chemistry A, 2021, 9(35): 19664-19668. |
32 | Zhang H M, Zhao S W, Huang F Q. A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(48): 27140-27169. |
33 | Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): A803. |
34 | Li Z Y, Liu J A, Niu B B, et al. A novel graphite-graphite dual ion battery using an AlCl3-[EMIm]Cl liquid electrolyte[J]. Small, 2018, 14(28): 1800745. |
35 | Feng Y H, Chen S H, Wang J, et al. Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor[J]. Journal of Energy Chemistry, 2020, 43: 129-138. |
36 | Shi X Y, Yu S S, Deng T, et al. Unlock the potential of Li4Ti5O12 for high-voltage/long-cycling-life and high-safety batteries: dual-ion architecture superior to lithium-ion storage[J]. Journal of Energy Chemistry, 2020, 44: 13-18. |
37 | Fan L, Liu Q, Xu Z, et al. An organic cathode for potassium dual-ion full battery[J]. ACS Energy Letters, 2017, 2(7): 1614-1620. |
38 | Chen Y, Qiu X M, Fan L Z. Nitrogen-rich hierarchically porous carbon foams as high-performance electrodes for lithium-based dual-ion capacitor[J]. Journal of Energy Chemistry, 2020, 48: 187-194. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[4] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[5] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[8] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[9] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
[10] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[11] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[12] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[13] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[14] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[15] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 215
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||