化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2655-2667.DOI: 10.11949/0438-1157.20230147
胡南1,2(), 陶德敏1,2, 杨照岚1, 王学兵1, 张向旭1, 刘玉龙3, 丁德馨1,2()
收稿日期:
2023-02-22
修回日期:
2023-05-19
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
丁德馨
作者简介:
胡南(1982—),男,博士,教授,hn12352000@163.com
基金资助:
Nan HU1,2(), Demin TAO1,2, Zhaolan YANG1, Xuebing WANG1, Xiangxu ZHANG1, Yulong LIU3, Dexin DING1,2()
Received:
2023-02-22
Revised:
2023-05-19
Online:
2023-06-05
Published:
2023-07-27
Contact:
Dexin DING
摘要:
设计了铁炭微电解-硫酸盐还原菌(Fe/C-SRB)、铝炭微电解-硫酸盐还原菌(Al/C-SRB)、炭-硫酸盐还原菌(C-SRB)、铁炭微电解(Fe/C)、铝炭微电解(Al/C)和炭(C)6个反应器,并研究了它们修复铀尾矿库渗滤水中U、Mn、Zn、SO
中图分类号:
胡南, 陶德敏, 杨照岚, 王学兵, 张向旭, 刘玉龙, 丁德馨. 铁炭微电解与硫酸盐还原菌耦合修复铀尾矿库渗滤水的研究[J]. 化工学报, 2023, 74(6): 2655-2667.
Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria[J]. CIESC Journal, 2023, 74(6): 2655-2667.
样品 | 成分浓度/(mg/L) | COD/(mg/L) | pH | Eh/mV | ||||||
---|---|---|---|---|---|---|---|---|---|---|
U | Mg | Mn | Zn | Fe | NO | SO | ||||
沉积物 | 0.03 g/kg | 4.51 g/kg | 0.50 g/kg | 0.73 g/kg | 1.40 g/kg | — | — | — | 6.05 | — |
丰水期水样 | 0.32 | 45.60 | 7.94 | 0.31 | — | 236.84 | 1169.15 | 44.52 | 6.35 | 273.60 |
枯水期水样 | 0.71 | 54.60 | 31.51 | 1.73 | — | 557.42 | 1700.46 | 60.25 | 5.34 | 187.60 |
表1 沉积物和渗滤水的理化成分
Table 1 Geochemical characteristics of sediment and leachate samples
样品 | 成分浓度/(mg/L) | COD/(mg/L) | pH | Eh/mV | ||||||
---|---|---|---|---|---|---|---|---|---|---|
U | Mg | Mn | Zn | Fe | NO | SO | ||||
沉积物 | 0.03 g/kg | 4.51 g/kg | 0.50 g/kg | 0.73 g/kg | 1.40 g/kg | — | — | — | 6.05 | — |
丰水期水样 | 0.32 | 45.60 | 7.94 | 0.31 | — | 236.84 | 1169.15 | 44.52 | 6.35 | 273.60 |
枯水期水样 | 0.71 | 54.60 | 31.51 | 1.73 | — | 557.42 | 1700.46 | 60.25 | 5.34 | 187.60 |
实验分组 | 处理方式 | 平行样 |
---|---|---|
A | Al/C+SRB | 3 |
B | Fe/C+SRB | 3 |
C | C+SRB | 3 |
D | Al/C | 3 |
E | Fe/C | 3 |
F | C | 3 |
BLANK | 1 |
表2 实验分组
Table 2 Experimental grouping
实验分组 | 处理方式 | 平行样 |
---|---|---|
A | Al/C+SRB | 3 |
B | Fe/C+SRB | 3 |
C | C+SRB | 3 |
D | Al/C | 3 |
E | Fe/C | 3 |
F | C | 3 |
BLANK | 1 |
1 | Carvan M J I, Dalton T P, Stuart G W, et al. Transgenic zebrafish as sentinels for aquatic pollution[J]. Annals of the New York Academy of Sciences, 2000, 919(1): 133-147. |
2 | Ding D X, Tan G C, Zhang Q, et al. Enhancement effects of weak electric field on uranium and manganese removal from leachate of uranium tailings impoundment by artificial wetland[J]. Journal of Cleaner Production, 2022, 363: 132601. |
3 | Liu Y, Gu P, Jia L, et al. An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions[J]. Journal of Hazardous Materials, 2016, 302: 82-89. |
4 | Deng D Y, Zhang L F, Dong M, et al. Radioactive waste: a review[J]. Water Environment Research, 2020, 92(10): 1818-1825. |
5 | Wang J L, Wan Z. Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry[J]. Progress in Nuclear Energy, 2015, 78: 47-55. |
6 | Xu Y N, Chen Y G. Advances in heavy metal removal by sulfate-reducing bacteria[J]. Water Science and Technology, 2020, 81(9): 1797-1827. |
7 | Guo J, Kang Y, Feng Y. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron[J]. Journal of Environmental Management, 2017, 203: 278-285. |
8 | Uhrie J L, Drever J I, Colberg P J S, et al. In situ immobilization of heavy metals associated with uranium leach mines by bacterial sulfate reduction[J]. Hydrometallurgy, 1996, 43(1/2/3): 231-239. |
9 | Kiran M G, Pakshirajan K, Das G. Heavy metal removal from multicomponent system by sulfate reducing bacteria: mechanism and cell surface characterization[J]. Journal of Hazardous Materials, 2017, 324: 62-70. |
10 | Hoa T T H, Liamleam W, Annachhatre A P. Lead removal through biological sulfate reduction process[J]. Bioresource Technology, 2007, 98(13): 2538-2548. |
11 | Biswas K C, Woodards N A, Xu H F, et al. Reduction of molybdate by sulfate-reducing bacteria[J]. BioMetals, 2009, 22(1): 131-139. |
12 | Germain D, Cyr J. Evaluation of biofilter performance to remove dissolved arsenic: wood Cadillac[C]//2003 Proceedings of Sudbury. Sudbury Ontario, Mining and the Environment, 2003. |
13 | Drury W J. Treatment of acid mine drainage with anaerobic solid-substrate reactors[J]. Water Environment Research, 1999, 71(6): 1244-1250. |
14 | Loghavi L, Sastry S K, Yousef A E. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus [J]. Biotechnology Progress, 2009, 25(1): 85-94. |
15 | Papirio S, Villa-Gomez D K, Esposito G, et al. Acid mine drainage treatment in fluidized-bed bioreactors by sulfate-reducing bacteria: a critical review[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(23): 2545-2580. |
16 | Jong T, Parry D L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs[J]. Water Research, 2003, 37(14): 3379-3389. |
17 | Chang Y J, Chang Y T, Hung C H, et al. Microbial community analysis of anaerobic bio-corrosion in different ORP profiles[J]. International Biodeterioration & Biodegradation, 2014, 95: 93-101. |
18 | Di J Z, Ma Y M, Wang M J, et al. Dynamic experiments of acid mine drainage with Rhodopseudomonas spheroides activated lignite immobilized sulfate-reducing bacteria particles treatment[J]. Scientific Reports, 2022, 12: 8783. |
19 | Postgate J R, Campbell L L. Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria[J]. Bacteriological Reviews, 1966, 30(4): 732-738. |
20 | Kumar N, Chaurand P, Rose J, et al. Synergistic effects of sulfate reducing bacteria and zero valent iron on zinc removal and stability in aquifer sediment[J]. Chemical Engineering Journal, 2015, 260: 83-89. |
21 | Guo Z L, Xie C J, Zhang P, et al. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm[J]. Science of the Total Environment, 2017, 580: 1300-1308. |
22 | 邵科. 电极生物膜法还原Fe(Ⅲ)EDTA和NO 2 - 的特性[D]. 杭州: 浙江大学, 2007. |
Shao K. The reduction of Fe(Ⅲ)EDTA and NO 2 - by a bio-electrochemical reactor[D]. Hangzhou: Zhejiang University, 2007. | |
23 | 刘恒源. 电流对生物-电化学反硝化工艺的影响机制[D]. 北京: 中国地质大学(北京), 2018. |
Liu H Y. Effect mechanism of electric current on the bio-electrochemical denitrification processs[D]. Beijing: China University of Geosciences, 2018. | |
24 | 李殿鑫, 胡南, 黄超, 等. 富集的硫酸盐还原菌沉积物生物还原地下水中U(Ⅵ)的实验研究[J]. 化工学报, 2018, 69(8): 3619-3625. |
Li D X, Hu N, Huang C, et al. Experimental study on U(Ⅵ) bioreduction by incubated sulfate reducing bacteria sediment in groundwater[J]. CIESC Journal, 2018, 69(8): 3619-3625. | |
25 | 王秀杰, 王维奇, 李军, 等. 异养硝化菌Acinetobacter sp.的分离鉴定及其脱氮特性[J]. 中国环境科学, 2017, 37(11): 4241-4250. |
Wang X J, Wang W Q, Li J, et al. Isolation and identification of a heterotrophic nitrifier, Acinetobacter sp., and its characteristics of nitrogen removal[J]. China Environmental Science, 2017, 37(11): 4241-4250. | |
26 | Nilsson I, Ohlson S. Columnar denitrification of water by immobilized Pseudomonas denitrificans cells[J]. European Journal of Applied Microbiology and Biotechnology, 1982, 14(2): 86-90. |
27 | Miller D N, Smith R L. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria[J]. Journal of Contaminant Hydrology, 2009, 103(3/4): 182-193. |
28 | Hu N, Ding D X, Li S M, et al. Bioreduction of U(Ⅵ) and stability of immobilized uranium under suboxic conditions[J]. Journal of Environmental Radioactivity, 2016, 154: 60-67. |
29 | Kiran M G, Pakshirajan K, Das G. An overview of sulfidogenic biological reactors for the simultaneous treatment of sulfate and heavy metal rich wastewater[J]. Chemical Engineering Science, 2017, 158: 606-620. |
30 | Dinh H T, Kuever J, Mußmann M, et al. Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427(6977): 829-832. |
31 | Kong Q, Ngo H H, Shu L, et al. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor[J]. Journal of Hazardous Materials, 2014, 279: 511-517. |
32 | Azabou S, Mechichi T, Patel B K C, et al. Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source[J]. Journal of Hazardous Materials, 2007, 140(1/2): 264-270. |
33 | Dev S, Roy S, Bhattacharya J. Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling[J]. Journal of Environmental Management, 2016, 177: 101-110. |
34 | Song H, Yim G J, Ji S W, et al. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal[J]. Journal of Environmental Management, 2012, 111: 150-158. |
35 | Demanèche S, Philippot L, David M M, et al. Characterization of denitrification gene clusters of soil bacteria via a metagenomic approach[J]. Applied and Environmental Microbiology, 2009, 75(2): 534-537. |
36 | Wrighton K C, Virdis B, Clauwaert P, et al. Bacterial community structure corresponds to performance during cathodic nitrate reduction[J]. The ISME Journal, 2010, 4(11): 1443-1455. |
37 | Xiao Y, Zheng Y, Wu S, et al. Bacterial community structure of autotrophic denitrification biocathode by 454 pyrosequencing of the 16S rRNA gene[J]. Microbial Ecology, 2015, 69(3): 492-499. |
38 | Chen D, Wang D, Xiao Z X, et al. Nitrate removal in a combined bioelectrochemical and sulfur autotrophic denitrification system under high nitrate concentration: effects of pH[J]. Bioprocess and Biosystems Engineering, 2018, 41(4): 449-455. |
39 | North N N, Dollhopf S L, Petrie L, et al. Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate[J]. Applied and Environmental Microbiology, 2004, 70(8): 4911-4920. |
40 | Zeng T T, Zhang S Q, Gao X, et al. Assessment of bacterial community composition of anaerobic granular sludge in response to short-term uranium exposure[J]. Microbial Ecology, 2018, 76(3): 648-659. |
41 | Mondani L, Benzerara K, Carrière M, et al. Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls[J]. PLoS One, 2011, 6(10): e25771. |
42 | Hao T W, Xiang P Y, MacKey H R, et al. A review of biological sulfate conversions in wastewater treatment[J]. Water Research, 2014, 65: 1-21. |
43 | Xiao S, Guo S Q, Nesin V, et al. Subnanosecond electric pulses cause membrane permeabilization and cell death[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(5): 1239-1245. |
44 | Su W T, Zhang L X, Li D P, et al. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor[J]. Biotechnology and Bioengineering, 2012, 109(11): 2904-2910. |
45 | Akob D M, Mills H J, Gihring T M, et al. Functional diversity and electron donor dependence of microbial populations capable of U(Ⅵ) reduction in radionuclide-contaminated subsurface sediments[J]. Applied and Environmental Microbiology, 2008, 74(10): 3159-3170. |
46 | Kazy S K, D'Souza S F, Sar P. Uranium and thorium sequestration by a Pseudomonas sp.: mechanism and chemical characterization[J]. Journal of Hazardous Materials, 2009, 163(1): 65-72. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[3] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[4] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[5] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[6] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[7] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[8] | 黄玉龙, 吕凡, 仇俊杰, 章骅, 何品晶. 易腐垃圾厌氧消化沼液理化性质及VOCs分子特征[J]. 化工学报, 2023, 74(3): 1275-1285. |
[9] | 查坦捷, 杨涵, 秦荷杰, 关小红. 仿生材料的构建及其在水环境化学领域中的研究进展[J]. 化工学报, 2023, 74(2): 585-598. |
[10] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[11] | 李鑫, 曾少娟, 彭奎霖, 袁磊, 张香平. CO2电催化还原制合成气研究进展及趋势[J]. 化工学报, 2023, 74(1): 313-329. |
[12] | 王磊, 蒋勇, 钟达忠, 李佳元, 郝根彦, 赵强, 李晋平. 碳化的MOF用于电催化还原二氧化碳制备乙烯和乙醇[J]. 化工学报, 2022, 73(8): 3576-3585. |
[13] | 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221. |
[14] | 贾艳萍, 丁雪, 刚健, 佟泽为, 张海丰, 张兰河. Mn强化Fe/C微电解工艺条件优化及降解油墨废水机理[J]. 化工学报, 2022, 73(5): 2183-2193. |
[15] | 郭志强, 燕可洲, 张吉元, 柳丹丹, 高阳艳, 郭彦霞. 煤矸石/粉煤灰对赤泥钠化还原焙烧反应的影响机制[J]. 化工学报, 2022, 73(5): 2194-2205. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 171
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||