化工学报 ›› 2024, Vol. 75 ›› Issue (2): 637-646.DOI: 10.11949/0438-1157.20230745
陈宏1,2(), 江坤2, 唐廷江2, 黄易元2, 池滨3(
), 廖世军1(
)
收稿日期:
2023-07-17
修回日期:
2024-01-18
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
池滨,廖世军
作者简介:
陈宏(1980—),男,博士研究生,高级工程师,chenhong@vision-batt.com
基金资助:
Hong CHEN1,2(), Kun JIANG2, Tingjiang TANG2, Yiyuan HUANG2, Bin CHI3(
), Shijun LIAO1(
)
Received:
2023-07-17
Revised:
2024-01-18
Online:
2024-02-25
Published:
2024-04-10
Contact:
Bin CHI, Shijun LIAO
摘要:
随着燃料电池应用领域的拓宽以及应用规模的不断扩大,大功率燃料电池电堆的需求也不断上升。大功率燃料电池电堆的电压一致性是衡量或影响电堆性能的重要指标。对某公司生产的65 kW大功率电堆进行了单电池一致性的研究,考察不同运行条件对于电堆一致性的影响,并对其产生的可能原因进行了深入的研究和讨论。研究结果表明:在额定功率和给定的运行条件下,电堆表现出了较好的一致性;电堆输出功率、电堆温度和温差、反应气体计量比、气体湿度等对电堆膜电极一致性均有较大的影响。其中输出功率、空气计量比、气体湿度对于电堆一致性的影响最为强烈,输出功率增高、空气计量比和空气湿度降低均会大幅度降低电堆的一致性。在研究结果的基础上,提出了保持大功率燃料电池电堆一致性的运行条件的建议。可为改善大功率电堆的设计和优化大功率电堆的运行条件,及促进我国燃料电池技术及产业的发展提供参考。
中图分类号:
陈宏, 江坤, 唐廷江, 黄易元, 池滨, 廖世军. 大功率质子交换膜燃料电池电堆膜电极一致性研究[J]. 化工学报, 2024, 75(2): 637-646.
Hong CHEN, Kun JIANG, Tingjiang TANG, Yiyuan HUANG, Bin CHI, Shijun LIAO. Research on membrane electrode assembly consistency of high-power proton exchange membrane fuel cell stack[J]. CIESC Journal, 2024, 75(2): 637-646.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
额定功率 | 65 kW | 额定电流 | 540 A |
电堆质量 | 45 kg | 单电池数 | 210片 |
电堆长度 | 440 mm | 电堆宽度 | 419 mm |
电堆高度 | 124 mm | 活性面积 | 300 cm² |
表1 电堆参数
Table 1 List of stack parameters
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
额定功率 | 65 kW | 额定电流 | 540 A |
电堆质量 | 45 kg | 单电池数 | 210片 |
电堆长度 | 440 mm | 电堆宽度 | 419 mm |
电堆高度 | 124 mm | 活性面积 | 300 cm² |
电流/A | 电压/V | 功率/kW | 平均单片 电压/V | 单片电压 波动率 |
---|---|---|---|---|
180 | 150 | 27 | 0.731 | 0.16 |
300 | 147 | 44 | 0.717 | 0.21 |
420 | 140 | 59 | 0.669 | 0.40 |
540 | 133 | 72 | 0.638 | 0.50 |
表2 不同功率点电堆输出性能
Table 2 Output performance of the stack at different power point
电流/A | 电压/V | 功率/kW | 平均单片 电压/V | 单片电压 波动率 |
---|---|---|---|---|
180 | 150 | 27 | 0.731 | 0.16 |
300 | 147 | 44 | 0.717 | 0.21 |
420 | 140 | 59 | 0.669 | 0.40 |
540 | 133 | 72 | 0.638 | 0.50 |
图5 不同电流下气压对电压一致性的影响及阳极/阴极气体压力为120/100、140/120 kPa时单片电压
Fig.5 The influence of pressure on voltage consistency under different current and single cell voltage at anode/cathode gas pressure 120/100, 140/120 kPa
图8 不同电流下阳极和阴极湿度对电压波动率、平均电压的影响
Fig.8 The influence of anode and cathode humidity on voltage consistency and influence of anode and cathode humidity on average voltage at different current
1 | 衣宝廉. 燃料电池——原理·技术·应用[M]. 北京: 化学工业出版社, 2003. |
Yi B L. Fuel Cells—Principles, Technologies and Applications[M]. Beijing: Chemical Industry Press, 2003. | |
2 | Xu Z, Yan Y, Wei W, et al. Supply system of cryo-compressed hydrogen for fuel cell stacks on heavy duty trucks[J]. International Journal of Hydrogen Energy, 2020, 45(23): 12921-12931. |
3 | Fan L X, Tu Z K, Chan S H. Recent development in design a state-of-art proton exchange membrane fuel cell from stack to system: theory, integration and prospective[J]. International Journal of Hydrogen Energy, 2023, 48(21): 7828-7865. |
4 | 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
Gao W T, Lei Y J, Zhang X, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. | |
5 | Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595: 361-369. |
6 | 翁元明, 林瑞, 唐文超, 等. 燃料电池堆单片电压一致性研究进展[J]. 电源技术, 2015, 39(1): 199-202. |
Weng Y M, Lin R, Tang W C, et al. Development of individual cell voltage uniformity of fuel cell stack[J]. Chinese Journal of Power Sources, 2015, 39(1): 199-202. | |
7 | Manoharan Y, Hosseini S E, Butler B, et al. Hydrogen fuel cell vehicles; current status and future prospect[J]. Applied Sciences, 2019, 9(11): 2296. |
8 | 齐基. PEM燃料电池堆单片一致性的研究[D]. 武汉: 武汉理工大学, 2011. |
Qi J. Study on individual cell voltage uniformity of PEMFC stack[D].Wuhan: Wuhan University of Technology, 2011. | |
9 | Li Y K, Zhao X Q, Liu Z X, et al. Experimental study on the voltage uniformity for dynamic loading of a PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2015, 40(23): 7361-7369. |
10 | Verma A, Pitchumani R. Effects of operating parameters on the transient response of proton exchange membrane fuel cells subject to load changes[J]. International Journal of Hydrogen Energy, 2014, 39(33): 19024-19038. |
11 | Wei T, Chang G F, Dai H F, et al. Understanding the transient behavior and consistency evolution of PEMFC from the perspective of temperature[C]//SAE Technical Paper Series. Warrendale, PA, United States: SAE International, 2022. |
12 | Lin R, Zhu Y K, Ni M, et al. Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start[J]. Applied Energy, 2019, 241: 420-432. |
13 | Zhu W H, Payne R U, Cahela D R, et al. Uniformity analysis at MEA and stack levels for a nexa PEM fuel cell system[J]. Journal of Power Sources, 2004, 128(2): 231-238. |
14 | 陈维荣, 刘嘉蔚, 郭爱, 等. 14.4 kW PEMFC电堆单体电压均衡性实验研究[J]. 西南交通大学学报, 2017, 52(3): 429-438. |
Chen W R, Liu J W, Guo A, et al. Experimental study on voltage uniformity of 14.4 kW PEMFC stack single cell[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 429-438. | |
15 | 谭凯峰, 陈维荣, 韩明, 等. 空冷型PEMFC电堆的单电池特性研究[J]. 电化学, 2018, 24(6): 766-771. |
Tan K F, Chen W R, Han M, et al. Voltage distribution of self-humidifying air-cooled PEMFC[J]. Journal of Electrochemistry, 2018, 24(6): 766-771. | |
16 | Zhang X X, Jiang Y, Huang L, et al. Inconsistent responses of cells on operating conditions in a 5 kW proton exchange membrane fuel cell stack[J]. Electrochimica Acta, 2021, 391: 138925. |
17 | Chen D F, Pei P C, Li Y H, et al. Proton exchange membrane fuel cell stack consistency: evaluation methods, influencing factors, membrane electrode assembly parameters and improvement measures[J]. Energy Conversion and Management, 2022, 261: 115651. |
18 | Shen C J, Xu S C, Gao Y. Analysis of fuel cell stack performance attenuation and individual cell voltage uniformity based on the durability cycle condition[J]. Polymers, 2021, 13(8): 1199. |
19 | Chen H C, Shan W C, Liao H Y, et al. Online voltage consistency prediction of proton exchange membrane fuel cells using a machine learning method[J]. International Journal of Hydrogen Energy, 2021, 46(69): 34399-34412. |
20 | Corbo P, Migliardini F, Veneri O. Experimental analysis of a 20 kWe PEM fuel cell system in dynamic conditions representative of automotive applications[J]. Energy Conversion and Management, 2008, 49(10): 2688-2697. |
21 | Lin J W, Wu P, Dai H W, et al. Intelligent optimization of clamping design of PEM fuel cell stack for high consistency and uniformity of contact pressure[J]. International Journal of Green Energy, 2022, 19(1): 95-108. |
22 | Hu Z Y, Xu L F, Li J Q, et al. The uniformity and consistency analysis of a fuel cell stack with multipoint voltage-monitoring method[J]. Energy Procedia, 2019, 158: 2118-2125. |
23 | Pan G J, Bai Y P, Song H H, et al. Hydrogen fuel cell power system—development perspectives for hybrid topologies[J]. Energies, 2023, 16(6): 2680. |
24 | Qiu Y Q, Zeng T, Zhang C Z, et al. Progress and challenges in multi-stack fuel cell system for high power applications: architecture and energy management[J]. Green Energy and Intelligent Transportation, 2023, 2(2): 100068. |
25 | Barbir F. PEM Fuel Cells: Theory and Practice[M]. 2nd ed. London: Academic Press, 2013. |
26 | Baghban Yousefkhani M, Ghadamian H, Daneshvar K, et al. Investigation of the fuel utilization factor in PEM fuel cell considering the effect of relative humidity at the cathode[J]. Energies, 2020, 13(22): 6117. |
27 | Liu F, Xue X L, Zhang B B, et al. Improvement of air distribution consistency in large-scale proton exchange membrane fuel cell stack manifold[J]. Electrochemistry Communications, 2022, 144/145: 107396. |
28 | Rohendi D, Majlan E H, Mohamad A B, et al. Effects of temperature and backpressure on the performance degradation of MEA in PEMFC[J]. International Journal of Hydrogen Energy, 2015, 40(34): 10960-10968. |
29 | 侯健, 杨铮, 贺婷, 等. 质子交换膜燃料电池热管理问题的研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 19-30. |
Hou J, Yang Z, He T, et al. Research progress on thermal management of proton exchange membrane fuel cells[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 19-30. | |
30 | Chen Q, Zhang G B, Zhang X Z, et al. Thermal management of polymer electrolyte membrane fuel cells: a review of cooling methods, material properties, and durability[J]. Applied Energy, 2021, 286: 116496. |
31 | Pérez-Page M, Pérez-Herranz V. Effect of the operation and humidification temperatures on the performance of a PEM fuel cell stack[J]. ECS Transactions, 2009, 25(1): 733-745. |
32 | 杨子荣, 李岩, 冀雪峰, 等. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981. |
Yang Z R, Li Y, Ji X F, et al. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 1971-1981. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[3] | 王茹, 沈永超, 卫东, 郭倩. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257. |
[4] | 朱晓兵, 张建辉, 李小松, 刘景林, 刘剑豪, 金灿. 空气源电化学连续分离制氧(Ⅰ):单池性能优化[J]. 化工学报, 2016, 67(5): 2022-2032. |
[5] | 聂瑶, 丁炜, 魏子栋. 质子交换膜燃料电池非铂电催化剂研究进展[J]. 化工学报, 2015, 66(9): 3305-3318. |
[6] | 彭跃进, 彭赟, 李伦, 刘志祥, 陈维荣. 质子交换膜燃料电池电源系统停机特性及控制策略[J]. 化工学报, 2015, 66(3): 1178-1184. |
[7] | 沈俊, 周兵, 邱子朝, 涂正凯, 刘志春, 刘伟. 质子交换膜燃料电池强化传质[J]. 化工学报, 2014, 65(S1): 421-425. |
[8] | 蔡光旭1,2,郭建伟2,王佳1. 交流阻抗技术在质子交换膜燃料电池上的研究进展[J]. 化工进展, 2014, 33(01): 56-63. |
[9] | 卜永东, 沈寅麒, 杜小泽, 杨立军, 杨勇平. 仿蜂巢微通道分叉结构的甲醇重整制氢[J]. 化工学报, 2013, 64(6): 2177-2185. |
[10] | 汪飞杰, 杨代军, 张浩, 马建新. 1.5 kW质子交换膜燃料电池堆动态工况响应特性[J]. 化工学报, 2013, 64(4): 1380-1386. |
[11] | 戴丽萍,熊俊俏,刘海英. 杂质气体对质子交换膜燃料电池性能影响的研究进展[J]. 化工进展, 2013, 32(09): 2068-2076. |
[12] | 刘靖1,万忠民1,4,万军华1,丁刚强2,涂正凯3,刘伟4. 中压氢-氧质子交换膜燃料电池的运行特性[J]. 化工学报, 2012, 63(S1): 204-207. |
[13] | 屈树国,李建隆. 高温质子交换膜燃料电池用离子液体聚合物电解质的研究进展[J]. 化工进展, 2012, 31(12): 2660-2665. |
[14] | 汪小姗1,张锦芳1,张财智2,韩明2. 质子交换膜燃料电池的脉动进氢实验[J]. 化工学报, 2012, 63(1): 237-243. |
[15] | 李微微1,2,尚玉明2,王树博2,谢晓峰2,吕亚非1. AB-PBI分子量对高温膜燃料电池膜电极性能的影响[J]. 化工学报, 2011, 62(S2): 131-134. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 498
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 292
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||