化工学报 ›› 2023, Vol. 74 ›› Issue (12): 4810-4819.DOI: 10.11949/0438-1157.20230878
收稿日期:
2023-08-24
修回日期:
2023-10-10
出版日期:
2023-12-25
发布日期:
2024-02-19
通讯作者:
苗政
作者简介:
闫沛伟(1998—),男,硕士研究生,yanpeiwei@ncepu.edu.cn
基金资助:
Peiwei YAN(), Manzheng ZHANG, Meng XIAO, Zheng MIAO()
Received:
2023-08-24
Revised:
2023-10-10
Online:
2023-12-25
Published:
2024-02-19
Contact:
Zheng MIAO
摘要:
有机朗肯循环在中低温热能利用领域有着重要的应用。对其控制策略的研究是该技术走向实用化的必须过程。基于干热岩地热井口条件,通过热力学计算和设备选型设计了对应的ORC机组,并对该机组进行建模和动态仿真,研究了四种策略对ORC机组性能的影响规律及控制性能:恒定过热度运行,恒定蒸发压力运行,恒定负荷运行以及变负荷运行。结果表明:通过工质泵流量进行调节可以满足ORC系统的动态控制,实现系统的高效和稳定运行。恒定过热度运行不仅能在热源温度波动时保证系统的安全运行,同时也表现出最佳的输出性能。恒定蒸发压力运行、恒定负荷运行和变负荷运行可以在其需要的稳压、稳负荷和变负荷场景中应用,但它们都对过热度有极大的影响,这限制了它们的适用范围。因此在实际应用中应根据具体的工作场景在控制策略中组合不同的运行模式。
中图分类号:
闫沛伟, 张曼铮, 肖猛, 苗政. 地热能有机朗肯循环系统控制策略研究[J]. 化工学报, 2023, 74(12): 4810-4819.
Peiwei YAN, Manzheng ZHANG, Meng XIAO, Zheng MIAO. Study on the control strategy of a geothermal organic Rankine cycle system[J]. CIESC Journal, 2023, 74(12): 4810-4819.
工质 | 蒸发压力/MPa | 净输出功/kW | 热效率/% | 蒸发器换热量/kW | 冷凝器换热量/kW | 泵功/kW |
---|---|---|---|---|---|---|
R600a | 2.48 | 984.03 | 10.42 | 9442.38 | 8458.35 | 121.04 |
R600 | 1.53 | 911.54 | 9.65 | 9442.38 | 8530.84 | 61.34 |
R245fa | 1.28 | 919.54 | 9.74 | 9442.38 | 8522.84 | 45.12 |
R123 | 0.65 | 842.95 | 8.93 | 9442.38 | 8599.43 | 22.03 |
R601a | 0.66 | 879.76 | 9.32 | 9442.38 | 8562.62 | 25.05 |
R601 | 0.51 | 865.16 | 9.16 | 9442.38 | 8577.23 | 18.59 |
R141b | 0.50 | 794.01 | 8.41 | 9442.38 | 8648.37 | 14.93 |
表1 工质循环性能参数
Table 1 Cycle performance parameters of working fluid
工质 | 蒸发压力/MPa | 净输出功/kW | 热效率/% | 蒸发器换热量/kW | 冷凝器换热量/kW | 泵功/kW |
---|---|---|---|---|---|---|
R600a | 2.48 | 984.03 | 10.42 | 9442.38 | 8458.35 | 121.04 |
R600 | 1.53 | 911.54 | 9.65 | 9442.38 | 8530.84 | 61.34 |
R245fa | 1.28 | 919.54 | 9.74 | 9442.38 | 8522.84 | 45.12 |
R123 | 0.65 | 842.95 | 8.93 | 9442.38 | 8599.43 | 22.03 |
R601a | 0.66 | 879.76 | 9.32 | 9442.38 | 8562.62 | 25.05 |
R601 | 0.51 | 865.16 | 9.16 | 9442.38 | 8577.23 | 18.59 |
R141b | 0.50 | 794.01 | 8.41 | 9442.38 | 8648.37 | 14.93 |
状态点 | 位置 | 温度/ ℃ | 压力/ kPa | 焓/ (kJ/kg) | 熵/ (kJ/(kg·K)) | 流量/ (t/h) |
---|---|---|---|---|---|---|
1 | 膨胀机入口 | 100.47 | 1280 | 474.53 | 1.791 | 158 |
2 | 膨胀机出口 | 59.65 | 287 | 452.57 | 1.81 | 158 |
3 | 冷凝器露点 | 44.2 | 287 | 436.7 | 1.76 | 158 |
6 | 泵出口 | 44.2 | 1280 | 259.33 | 1.20 | 158 |
7 | 预热段出口 | 100.47 | 1280 | 340.53 | 1.43 | 158 |
9 | 热源入口 | 160 | 1000 | 675.7 | 1.94 | 100 |
10 | 热源出口 | 80 | 1000 | 335.8 | 1.08 | 100 |
11 | 冷却水入口 | 25 | 500 | 105.3 | 0.367 | 734 |
12 | 冷却水出口 | 35 | 500 | 147.1 | 0.504 | 734 |
表2 ORC系统主要状态点参数
Table 2 ORC system main state point parameters
状态点 | 位置 | 温度/ ℃ | 压力/ kPa | 焓/ (kJ/kg) | 熵/ (kJ/(kg·K)) | 流量/ (t/h) |
---|---|---|---|---|---|---|
1 | 膨胀机入口 | 100.47 | 1280 | 474.53 | 1.791 | 158 |
2 | 膨胀机出口 | 59.65 | 287 | 452.57 | 1.81 | 158 |
3 | 冷凝器露点 | 44.2 | 287 | 436.7 | 1.76 | 158 |
6 | 泵出口 | 44.2 | 1280 | 259.33 | 1.20 | 158 |
7 | 预热段出口 | 100.47 | 1280 | 340.53 | 1.43 | 158 |
9 | 热源入口 | 160 | 1000 | 675.7 | 1.94 | 100 |
10 | 热源出口 | 80 | 1000 | 335.8 | 1.08 | 100 |
11 | 冷却水入口 | 25 | 500 | 105.3 | 0.367 | 734 |
12 | 冷却水出口 | 35 | 500 | 147.1 | 0.504 | 734 |
换热器相区 | 传热系数 |
---|---|
蒸发器单相区[ | |
蒸发器两相区[ | |
热源侧[ | |
冷凝器单相区[ | |
冷凝器两相区[ | |
冷源侧[ |
表3 各相区传热系数
Table 3 The heat transfer coefficient of each phase region
换热器相区 | 传热系数 |
---|---|
蒸发器单相区[ | |
蒸发器两相区[ | |
热源侧[ | |
冷凝器单相区[ | |
冷凝器两相区[ | |
冷源侧[ |
参数 | 数值 |
---|---|
进汽压力/kPa | 1280 |
进汽温度/℃ | 100.47 |
进汽流量/(t/h) | 158 |
排汽压力/kPa | 287 |
排汽温度/℃ | 59.65 |
排汽流量/(t/h) | 158 |
额定功率/kW | 919.54 |
转速/(r/min) | 3000 |
表4 膨胀机设计参数
Table 4 Design parameters of the expander
参数 | 数值 |
---|---|
进汽压力/kPa | 1280 |
进汽温度/℃ | 100.47 |
进汽流量/(t/h) | 158 |
排汽压力/kPa | 287 |
排汽温度/℃ | 59.65 |
排汽流量/(t/h) | 158 |
额定功率/kW | 919.54 |
转速/(r/min) | 3000 |
1 | Yan D, Yang F B, Yang F F, et al. Identifying the key system parameters of the organic Rankine cycle using the principal component analysis based on an experimental database[J]. Energy Conversion and Management, 2021, 240: 114252. |
2 | Yu X L, Li Z, Lu Y J, et al. Investigation of an innovative cascade cycle combining a trilateral cycle and an organic Rankine cycle (TLC-ORC) for industry or transport application[J]. Energies, 2018, 11(11): 3032. |
3 | Braimakis K, Karellas S. Exergetic optimization of double stage organic Rankine cycle (ORC)[J]. Energy, 2018, 149: 296-313. |
4 | Tchanche B F, Papadakis G, Lambrinos G, et al. Fluid selection for a low-temperature solar organic Rankine cycle[J]. Applied Thermal Engineering, 2009, 29(11/12): 2468-2476. |
5 | Hu S Z, Li J, Yang F B, et al. Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences[J]. Energy, 2020, 203: 117848. |
6 | Świerzewski M, Kalina J. Optimisation of biomass-fired cogeneration plants using ORC technology[J]. Renewable Energy, 2020, 159: 195-214. |
7 | Vera D, Baccioli A, Jurado F, et al. Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification[J]. Renewable Energy, 2020, 162: 1399-1414. |
8 | Frate G F, Baccioli A, Lucchesi E, et al. ORC optimal design through clusterization for waste heat recovery in anaerobic digestion plants[J]. Applied Sciences, 2021, 11(6): 2762. |
9 | Liu P, Shu G Q, Tian H. How to approach optimal practical organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery[J]. Energy, 2019, 174: 543-552. |
10 | 吴双应, 易甜甜, 肖兰. 基于多目标函数的亚临界有机朗肯循环的参数优化和性能分析[J]. 化工学报, 2014, 65(10): 4078-4085. |
Wu S Y, Yi T T, Xiao L. Parametric optimization and performance analysis of subcritical organic Rankine cycle based on multi-objective function[J]. CIESC Journal, 2014, 65(10): 4078-4085. | |
11 | Ping X, Yang F B, Zhang H G, et al. Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system[J]. Energy, 2021, 222: 120007. |
12 | Chen G B, An Q S, Wang Y Z, et al. Performance prediction and working fluids selection for organic Rankine cycle under reduced temperature[J]. Applied Thermal Engineering, 2019, 153: 95-103. |
13 | Pei G, Li J, Li Y Z, et al. Construction and dynamic test of a small-scale organic Rankine cycle[J]. Energy, 2011, 36(5): 3215-3223. |
14 | 张红光, 杨宇鑫, 孟凡骁, 等. 有机朗肯循环系统中工质泵的运行性能[J]. 化工学报, 2017, 68(9): 3573-3579. |
Zhang H G, Yang Y X, Meng F X, et al. Running performance of working fluid pump for organic Rankine cycle system[J]. CIESC Journal, 2017, 68(9): 3573-3579. | |
15 | Bekiloğlu H E, Bedir H, Anlaş G. Multi-objective optimization of ORC parameters and selection of working fluid using preliminary radial inflow turbine design[J]. Energy Conversion and Management, 2019, 183: 833-847. |
16 | 李鹏, 韩中合, 贾晓强, 等. 动态透平效率对有机朗肯循环系统性能的影响[J]. 化工学报, 2019, 70(4): 1532-1541. |
Li P, Han Z H, Jia X Q, et al. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system[J]. CIESC Journal, 2019, 70(4): 1532-1541. | |
17 | 王羽鹏, 梁俊伟, 罗向龙, 等. 基于神经网络的有机朗肯循环过程及循环性能计算方法[J]. 化工学报, 2019, 70(9): 3256-3266. |
Wang Y P, Liang J W, Luo X L, et al. Novel prediction method of process and system performance for organic Rankine cycle based on neural network[J]. CIESC Journal, 2019, 70(9): 3256-3266. | |
18 | Dal Magro F, Jimenez-Arreola M, Romagnoli A. Improving energy recovery efficiency by retrofitting a PCM-based technology to an ORC system operating under thermal power fluctuations[J]. Applied Energy, 2017, 208: 972-985. |
19 | Xie H, Yang C. Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle[J]. Applied Energy, 2013, 112: 130-141. |
20 | Da Lio L, Manente G, Lazzaretto A. A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems[J]. Applied Energy, 2017, 205: 187-209. |
21 | Shi Y, Lin R Z, Wu X L, et al. Dual-mode fast DMC algorithm for the control of ORC based waste heat recovery system[J]. Energy, 2022, 244: 122664. |
22 | Zhang W, Wang E H, Meng F X, et al. Closed-loop PI control of an organic Rankine cycle for engine exhaust heat recovery[J]. Energies, 2020, 13(15): 3817. |
23 | Wang X, Wang R, Jin M, et al. Control of superheat of organic Rankine cycle under transient heat source based on deep reinforcement learning[J]. Applied Energy, 2020, 278: 115637. |
24 | Usman M, Imran M, Lee D H, et al. Experimental investigation of off-grid organic Rankine cycle control system adapting sliding pressure strategy under proportional integral with feed-forward and compensator[J]. Applied Thermal Engineering, 2017, 110: 1153-1163. |
25 | Quoilin S, Aumann R, Grill A, et al. Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles[J]. Applied Energy, 2011, 88(6): 2183-2190. |
26 | Wei D H, Lu X S, Lu Z, et al. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery[J]. Energy Conversion and Management, 2007, 48(4): 1113-1119. |
27 | Bergman T L. Analysis of heat transfer enhancement in minichannel heat sinks with turbulent flow using H2O-Al2O3 nanofluids[J]. Journal of Electronic Packaging, 2009, 131(2): 1. |
28 | Gungor K E, Winterton R H S. A general correlation for flow boiling in tubes and annuli[J]. International Journal of Heat and Mass Transfer, 1986, 29(3): 351-358. |
29 | Kern D Q. Process Heat Transfer[M]. New York: McGraw-Hill, 1950. |
30 | Hewitt G F, Shires G L, Bott T R. Process Heat Transfer[M]. Boca Raton: CRC Press, 1994. |
31 | Lemort V, Quoilin S, Cuevas C, et al. Testing and modeling a scroll expander integrated into an organic Rankine cycle[J]. Applied Thermal Engineering, 2009, 29(14/15): 3094-3102. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[4] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[5] | 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895. |
[6] | 戚子豪, 钟文琪, 陈曦, 周冠文, 赵小亮, 辛美静, 陈翼, 朱永长. 基于混合建模的水泥生料分解过程动态特性研究[J]. 化工学报, 2022, 73(5): 2039-2051. |
[7] | 张成, 潘立志, 李元. 基于加权统计特征KICA的故障检测与诊断方法[J]. 化工学报, 2022, 73(2): 827-837. |
[8] | 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105. |
[9] | 王佳星, 赵家睿, 李斯特, 付媛, 刘凤杰, 韦昌. 不同放汽阀流量特性对弹射过程的影响规律[J]. 化工学报, 2021, 72(S1): 318-325. |
[10] | 李子航, 王占博, 苗政, 纪献兵. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495. |
[11] | 曹健, 冯新, 吉晓燕, 陆小华. 基于混合工质的多级蒸发ORC理论极限性能研究[J]. 化工学报, 2021, 72(7): 3780-3787. |
[12] | 孙浩然, 吕中原, 吴成云, 胡海涛. 机载补气增焓制冷系统动态仿真模型[J]. 化工学报, 2021, 72(5): 2484-2492. |
[13] | 江锦波, 滕黎明, 孟祥铠, 李纪云, 彭旭东. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202. |
[14] | 荣杨一鸣, 吴巧仙, 周霞, 方松, 王凯, 邱利民, 植晓琴. 空分系统空气压缩余热自利用性能优化研究[J]. 化工学报, 2021, 72(3): 1654-1666. |
[15] | 郭晓雨, 田喆, 牛纪德, 祝捷. 基于分时电价的区域管网系统储能应用研究[J]. 化工学报, 2020, 71(S1): 293-299. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 265
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 193
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||