化工学报 ›› 2023, Vol. 74 ›› Issue (12): 4777-4791.DOI: 10.11949/0438-1157.20231035
李彦乐(), 刘宜林, 霍俊杰, 孙艳霞, 董生德, 贺欣, 许琪, 马路祥, 周园(), 海春喜()
收稿日期:
2023-10-07
修回日期:
2023-12-15
出版日期:
2023-12-25
发布日期:
2024-02-19
通讯作者:
周园,海春喜
作者简介:
李彦乐(1997—),男,硕士研究生,lyl2046767621@163.com
基金资助:
Yanle LI(), Yilin LIU, Junjie HUO, Yanxia SUN, Shengde DONG, Xin HE, Qi XU, Luxiang MA, Yuan ZHOU(), Chunxi HAI()
Received:
2023-10-07
Revised:
2023-12-15
Online:
2023-12-25
Published:
2024-02-19
Contact:
Yuan ZHOU, Chunxi HAI
摘要:
随着动力电池车的快速发展和广泛应用,锂资源的需求量急剧增加。如何实现我国具有国际资源优势的盐湖锂资源高效利用开发是近几十年来盐湖化工产业亟需解决的关键问题。与国外已实现开发利用的盐湖相比,除了西藏部分盐湖以外,我国盐湖锂资源大多是锂浓度低至几十mg/L、镁锂比极高(约500,甚至更高)的低品位资源。截至目前,基于我国盐湖锂资源的特征,已开发了几种盐湖提锂方法,如膜法、吸附法、太阳池法、溶剂萃取法和电化学法等,部分已成功应用于实际盐湖卤水提锂产业化生产中。其中,吸附法因高Li+选择性、良好的适用性、工艺简单、绿色高效和可循环利用等特性而备受关注。层状结构铝系吸附剂(Li/Al-LDHs)因具有较高的选择性、绿色环保等优势已成功实现产业化应用。然而,该类吸附剂在规模化应用时仍存在动态吸附容量极低、粉化严重等问题,有待进一步深入研究探讨。从Li/Al-LDHs吸附性能与晶体结构间构效关系出发,梳理总结了Li/Al-LDHs吸附剂循环周期短、应用性能差的原因,并从结构稳定性的角度出发,提出了性能提升的解决方案。
中图分类号:
李彦乐, 刘宜林, 霍俊杰, 孙艳霞, 董生德, 贺欣, 许琪, 马路祥, 周园, 海春喜. 层状结构铝系吸附剂在盐湖提锂领域的研究[J]. 化工学报, 2023, 74(12): 4777-4791.
Yanle LI, Yilin LIU, Junjie HUO, Yanxia SUN, Shengde DONG, Xin HE, Qi XU, Luxiang MA, Yuan ZHOU, Chunxi HAI. Research progress of aluminum adsorbents in lithium extraction from salt lakes[J]. CIESC Journal, 2023, 74(12): 4777-4791.
图1 2010—2021年全球锂消费量和现有技术可提取锂储量的分布[3]
Fig.1 Distribution of global lithium consumption and recoverable lithium reserves with prior art from 2010 to 2021[3]
名称 | 国家 | Li+/% (质量分数) | Mg2+/% (质量分数) | Mg2+/Li+ |
---|---|---|---|---|
阿塔卡马盐湖 | 智利 | 0.157 | 0.965 | 6.147 |
乌尤尼盐湖 | 玻利维亚 | 0.032 | 0.650 | 20.313 |
银峰盐湖 | 美国 | 0.030 | 0.040 | 1.333 |
大盐湖 | 美国 | 0.006 | 0.800 | 133.333 |
斯马科弗盐湖 | 美国 | 0.038 | 0.750 | 19.737 |
克莱顿谷盐湖 | 美国 | 0.016 | 0.019 | 1.188 |
东台吉乃尔盐湖 | 中国 | 0.085 | 2.990 | 35.176 |
西台吉乃尔盐湖 | 中国 | 0.021 | 1.280 | 60.952 |
一里坪盐湖 | 中国 | 0.022 | 2.000 | 90.909 |
扎布耶盐湖城 | 中国 | 0.970 | 0.001 | 0.001 |
大柴旦盐湖 | 中国 | 0.020 | 1.300 | 65.000 |
扎布耶南湖 | 中国 | 0.141 | 0.0004 | 0.003 |
扎布耶北湖 | 中国 | 0.153 | 0.002 | 0.013 |
察尔汗盐湖 | 中国 | 0.0013 | 2.370 | 1823.077 |
表1 盐湖卤水资源特征[13]
Table 1 Distribution of brine water resources in salt lakes[13]
名称 | 国家 | Li+/% (质量分数) | Mg2+/% (质量分数) | Mg2+/Li+ |
---|---|---|---|---|
阿塔卡马盐湖 | 智利 | 0.157 | 0.965 | 6.147 |
乌尤尼盐湖 | 玻利维亚 | 0.032 | 0.650 | 20.313 |
银峰盐湖 | 美国 | 0.030 | 0.040 | 1.333 |
大盐湖 | 美国 | 0.006 | 0.800 | 133.333 |
斯马科弗盐湖 | 美国 | 0.038 | 0.750 | 19.737 |
克莱顿谷盐湖 | 美国 | 0.016 | 0.019 | 1.188 |
东台吉乃尔盐湖 | 中国 | 0.085 | 2.990 | 35.176 |
西台吉乃尔盐湖 | 中国 | 0.021 | 1.280 | 60.952 |
一里坪盐湖 | 中国 | 0.022 | 2.000 | 90.909 |
扎布耶盐湖城 | 中国 | 0.970 | 0.001 | 0.001 |
大柴旦盐湖 | 中国 | 0.020 | 1.300 | 65.000 |
扎布耶南湖 | 中国 | 0.141 | 0.0004 | 0.003 |
扎布耶北湖 | 中国 | 0.153 | 0.002 | 0.013 |
察尔汗盐湖 | 中国 | 0.0013 | 2.370 | 1823.077 |
方法 | 商业化利用盐湖 | 优势 | 劣势 |
---|---|---|---|
膜法 | 青海一里坪盐湖 (五矿盐湖有限公司) 青海西台吉乃尔盐湖 (青海中信国安锂业发展 有限公司) | 显著降低卤水中的镁锂比,降低了后续 提锂难度 | 易堵塞、重复利用率低、对卤水总盐度控制要求高 |
吸附法 | 青海察尔汗盐湖 (青海盐湖蓝科锂业股份有限公司) (西藏藏格锂业科技有限公司) | 高选择性、低成本、高效率、无污染 | 淡水消耗大、吸附容量不稳定、粉体吸附剂的流动性差、循环稳定性差、核心吸附剂关键材料性能提升仍需技术攻关 |
太阳池法 | 阿塔卡马盐湖,银峰盐湖(SQM, AL) 西藏扎布耶盐湖(西藏国能矿业 发展有限公司) | 绿色环保,充分利用盐湖区太阳能、风能等 提高盐湖的蒸发率,方便生产钾等副产品 | 需要大规模建设并维护盐田,初始投资金额大、较适用于低镁锂比盐湖,回收率低 |
溶剂萃取法 | 青海大柴旦盐湖(青海柴达木 兴华锂盐有限公司) (青海博华锂业有限公司) | 操作可连续化,速度快,生产周期短 | 有机溶剂有毒易燃,易腐蚀设备、成本高、 环保压力大 |
电化学法 | 西藏捌仟错盐湖 (江苏中南锂业有限公司) (西藏珠峰资源股份有限公司) | 高选择性、绿色环保、低成本 | 循环性有待提高、相关工艺仍需进一步优化、能耗相对较高 |
表2 商业化应用提锂技术优劣性对比[15-35]
Table 2 Comparison of lithium extraction technologies[15-35]
方法 | 商业化利用盐湖 | 优势 | 劣势 |
---|---|---|---|
膜法 | 青海一里坪盐湖 (五矿盐湖有限公司) 青海西台吉乃尔盐湖 (青海中信国安锂业发展 有限公司) | 显著降低卤水中的镁锂比,降低了后续 提锂难度 | 易堵塞、重复利用率低、对卤水总盐度控制要求高 |
吸附法 | 青海察尔汗盐湖 (青海盐湖蓝科锂业股份有限公司) (西藏藏格锂业科技有限公司) | 高选择性、低成本、高效率、无污染 | 淡水消耗大、吸附容量不稳定、粉体吸附剂的流动性差、循环稳定性差、核心吸附剂关键材料性能提升仍需技术攻关 |
太阳池法 | 阿塔卡马盐湖,银峰盐湖(SQM, AL) 西藏扎布耶盐湖(西藏国能矿业 发展有限公司) | 绿色环保,充分利用盐湖区太阳能、风能等 提高盐湖的蒸发率,方便生产钾等副产品 | 需要大规模建设并维护盐田,初始投资金额大、较适用于低镁锂比盐湖,回收率低 |
溶剂萃取法 | 青海大柴旦盐湖(青海柴达木 兴华锂盐有限公司) (青海博华锂业有限公司) | 操作可连续化,速度快,生产周期短 | 有机溶剂有毒易燃,易腐蚀设备、成本高、 环保压力大 |
电化学法 | 西藏捌仟错盐湖 (江苏中南锂业有限公司) (西藏珠峰资源股份有限公司) | 高选择性、绿色环保、低成本 | 循环性有待提高、相关工艺仍需进一步优化、能耗相对较高 |
吸附剂 | 原料 | 条件 | 吸附性能 | 文献 |
---|---|---|---|---|
Al(OH)3 | AlCl3·6H2O,NaOH,brine | T = 30℃ C(Li+) ≈ 1145 mg/L | 吸附率76.4% | [ |
Al(OH)3 | AlCl3·6H2O,KOH,LiCl | T = 80℃ C(Li+) ≈ 208~350 mg/L | 吸附率95% | [ |
Al(OH)3 | AlCl3·6H2O,NaOH,brine | T = 30℃ C(Li+) ≈ 5.5~19.5 mg/L | 吸附率93% | [ |
Al(OH)3 | Al(OH)3,LiOH·H2O,HCl | — | 吸附率91% | [ |
Al(OH)3 | 铝粉,NaCl,brine | C(Li+) ≈ 1000 mg/L Mg2+/Li+ ≈ 20 | 吸附率78.3% | [ |
Li/Al-LDHs | AlCl3·6H2O,NaOH,Na2CO3 | C(Li+) ≈ 675 mg/L Mg2+/Li+ ≈ 0.08 Na+/Li+ ≈ 48.7 | 吸附率96.07% | [ |
Li/Al-LDHs | LiCl, AlCl3,NaOH | C(Li+) ≈ 399 mg/L Mg2+/Li+ ≈ 302 | 吸附容量 ≈ 7.27 mg/g | [ |
Li/Al-LDHs | AlCl3·6H2O,NaOH,LiCl | C(Li+) ≈ 399 mg/L Mg2+/Li+ ≈ 302 | 吸附容量 ≈ 5.69 mg/g | [ |
Li/Al-LDHs | Fe3O4,AlCl3·6H2O,NaOH,LiCl | C(Li+) ≈ 370 mg/L Mg2+/Li+ ≈ 330 | 吸附容量 ≈ 6 mg/g | [ |
Li/Al-LDHs | Al2(SO4)3·18H2O,LiOH·H2O,尿素 | C(Li+) ≈ 969 mg/L Mg2+/Li+ ≈ 35 Na+/Li+ ≈ 80 | 吸附容量 ≈ 9.16 mg/g | [ |
Li/Al-LDHs | LiCl,尿素,铝箔 | C(Li+) ≈ 527 mg/L | 吸附率60% | [ |
Li-Al-O-OH | LiCl,尿素,铝箔,Na2SO4 | C(Li+) ≈ 527 mg/L | 吸附率55% | [ |
表3 铝系吸附剂的合成方法和吸附性能
Table 3 Synthesis method and adsorption properties of Li/Al-LDHs
吸附剂 | 原料 | 条件 | 吸附性能 | 文献 |
---|---|---|---|---|
Al(OH)3 | AlCl3·6H2O,NaOH,brine | T = 30℃ C(Li+) ≈ 1145 mg/L | 吸附率76.4% | [ |
Al(OH)3 | AlCl3·6H2O,KOH,LiCl | T = 80℃ C(Li+) ≈ 208~350 mg/L | 吸附率95% | [ |
Al(OH)3 | AlCl3·6H2O,NaOH,brine | T = 30℃ C(Li+) ≈ 5.5~19.5 mg/L | 吸附率93% | [ |
Al(OH)3 | Al(OH)3,LiOH·H2O,HCl | — | 吸附率91% | [ |
Al(OH)3 | 铝粉,NaCl,brine | C(Li+) ≈ 1000 mg/L Mg2+/Li+ ≈ 20 | 吸附率78.3% | [ |
Li/Al-LDHs | AlCl3·6H2O,NaOH,Na2CO3 | C(Li+) ≈ 675 mg/L Mg2+/Li+ ≈ 0.08 Na+/Li+ ≈ 48.7 | 吸附率96.07% | [ |
Li/Al-LDHs | LiCl, AlCl3,NaOH | C(Li+) ≈ 399 mg/L Mg2+/Li+ ≈ 302 | 吸附容量 ≈ 7.27 mg/g | [ |
Li/Al-LDHs | AlCl3·6H2O,NaOH,LiCl | C(Li+) ≈ 399 mg/L Mg2+/Li+ ≈ 302 | 吸附容量 ≈ 5.69 mg/g | [ |
Li/Al-LDHs | Fe3O4,AlCl3·6H2O,NaOH,LiCl | C(Li+) ≈ 370 mg/L Mg2+/Li+ ≈ 330 | 吸附容量 ≈ 6 mg/g | [ |
Li/Al-LDHs | Al2(SO4)3·18H2O,LiOH·H2O,尿素 | C(Li+) ≈ 969 mg/L Mg2+/Li+ ≈ 35 Na+/Li+ ≈ 80 | 吸附容量 ≈ 9.16 mg/g | [ |
Li/Al-LDHs | LiCl,尿素,铝箔 | C(Li+) ≈ 527 mg/L | 吸附率60% | [ |
Li-Al-O-OH | LiCl,尿素,铝箔,Na2SO4 | C(Li+) ≈ 527 mg/L | 吸附率55% | [ |
1 | Hammond D R, Brady T F. Critical minerals for green energy transition: a United States perspective[J]. International Journal of Mining, Reclamation and Environment, 2022, 36: 624-641. |
2 | Heredia F, Martinez A L, Surraco Urtubey V. The importance of lithium for achieving a low-carbon future: overview of the lithium extraction in the ‘Lithium Triangle’[J]. Journal of Energy & Natural Resources Law, 2020, 38(3): 213-236. |
3 | Geological Survey U.S.. Mineral commodity summary-lithium carbonate[R]. U.S. Geological Survey, 2022. |
4 | Xi W W, Zhao Y H, Ni P, et al. Main types, characteristics, distributions, and prospecting potential of lithium deposits[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(1): 19-35. |
5 | Yu F, Wang D F, Yu Y, et al. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Analysis, 2019, 38(3): 354-364. |
6 | Zhu L, Gu H N, Wen H J, et al. Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process[J]. Hydrometallurgy, 2021, 206: 105759. |
7 | Kundu T, Rath S S, Das S K, et al. Recovery of lithium from spodumene-bearing pegmatites: a comprehensive review on geological reserves, beneficiation, and extraction[J]. Powder Technology, 2023, 415: 118142. |
8 | Yang H P, Liu L, Ding G F, et al. Present situation and development trend of lithium resources in the world[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 26-40. |
9 | Yelatontsev D, Mukhachev A. Processing of lithium ores: industrial technologies and case studies — a review[J]. Hydrometallurgy, 2021, 201: 105578. |
10 | Swain B. Recovery and recycling of lithium: a review[J]. Separation and Purification Technology, 2017, 172: 388-403. |
11 | Kavanagh L, Lloyd A, Cabellos G, et al. Global lithium sources—industrial use and future in the electric vehicle industry: a review [J]. Resources, 2018, 7(3): 57. |
12 | Pramanik B K, Nghiem L D, Hai F I. Extraction of strategically important elements from brines: constraints and opportunities[J]. Water Research, 2020, 168: 115149. |
13 | Stringfellow W T, Dobson P F. Technology for the recovery of lithium from geothermal brines[J]. Energies, 2021, 14(20): 6805. |
14 | Chen J, Lin S, Yu J G. Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines[J]. Journal of Hazardous Materials, 2020, 388: 122101. |
15 | Butt F S, Lewis A, Chen T, et al. Lithium harvesting from the most abundant primary and secondary sources: a comparative study on conventional and membrane technologies[J]. Membranes, 2022, 12(4): 373. |
16 | Yang J L, Li L S, Tang Z Y. An efficient lithium extraction pathway in covalent organic framework membranes[J]. Matter, 2021, 4(8): 2666-2668. |
17 | Hou J E, Zhang H C, Thornton A W, et al. Lithium extraction by emerging metal-organic framework-based membranes[J]. Advanced Functional Materials, 2021, 31(46): 2105991. |
18 | Xiao H, Chai M, Hosseini A, et al. UiO-66-(COONa)2 membrane with programmable ionic channels for lithium ion-selective transport[J]. Journal of Membrane Science, 2023, 670: 121312. |
19 | Zuo P P, Xu Z A, Zhu Q, et al. Ion exchange membranes: constructing and tuning ion transport channels[J]. Advanced Functional Materials, 2022, 32(52): 2007366. |
20 | Yang J Q, Qu G R, Liu C P, et al. An effective lithium ion-imprinted membrane containing 12-crown ether-4 for selective recovery of lithium[J]. Chemical Engineering Research and Design, 2022, 184: 639-650. |
21 | Luo Q L, Dong M Z, Nie G L, et al. Extraction of lithium from salt lake brines by granulated adsorbents[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127256. |
22 | Li X W, Chao Y H, Chen L L, et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources[J]. Chemical Engineering Journal, 2020, 392: 123731. |
23 | Zhang G T, Zhang J Z, Zeng J B, et al. Improved structural stability and adsorption capacity of adsorbent material Li1.6Mn1.6O4 via facile surface fluorination[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127465. |
24 | Zhang G T, Zhang J Z, Zhou Y, et al. Synthesis of aluminum-doped ion-sieve manganese oxides powders with enhanced adsorption performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123950. |
25 | Zhang G T, Hai C X, Zhou Y, et al. Al and F ions co-modified Li1.6Mn1.6O4 with obviously enhanced Li+ adsorption performances[J]. Chemical Engineering Journal, 2022, 450: 137912. |
26 | Santoro S, Aquino M, Rizza C, et al. Lithium recovery through WS2 nanofillers-promoted solar photothermal membrane crystallization of LiCl[J]. Desalination, 2023, 546: 116186. |
27 | Zhang Y, Hu Y H, Wang L, et al. Systematic review of lithium extraction from salt-lake brines via precipitation approaches[J]. Minerals Engineering, 2019, 139: 105868. |
28 | Li X H, Mo Y H, Qing W H, et al. Membrane-based technologies for lithium recovery from water lithium resources: a review[J]. Journal of Membrane Science, 2019, 591(10): 117317. |
29 | Coterillo R, Gallart L E, Fernández-Escalante E, et al. Selective extraction of lithium from seawater desalination concentrates: study of thermodynamic and equilibrium properties using density functional theory (DFT)[J]. Desalination, 2022, 532: 115704. |
30 | Shi D, Cui B, Li L J, et al. Removal of calcium and magnesium from lithium concentrated solution by solvent extraction method using D2EHPA[J]. Desalination, 2020, 479: 114306. |
31 | Battistel A, Palagonia M S, Brogioli D, et al. Electrochemical methods for lithium recovery: a comprehensive and critical review[J]. Advanced Materials, 2020, 32(23): 1905440. |
32 | Liu D F, Zhao Z W, Xu W H, et al. A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation[J]. Desalination, 2021, 519: 115302. |
33 | Palagonia M S, Brogioli D, La Mantia F. Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell[J]. Desalination, 2020, 475: 114192. |
34 | Bazrgar Bajestani M, Moheb A, Dinari M. Preparation of lithium ion-selective cation exchange membrane for lithium recovery from sodium contaminated lithium bromide solution by electrodialysis process[J]. Desalination, 2020, 486: 114476. |
35 | Perez-Antolin D, Irastorza C, Gonzalez S, et al. Regenerative electrochemical ion pumping cell based on semi-solid electrodes for sustainable Li recovery[J]. Desalination, 2022, 533: 115764. |
36 | Xu P, Hong J, Qian X, et al. Materials for lithium recovery from salt lake brine[J]. Journal of Materials Science, 2021, 56(1): 16-63. |
37 | Dessemond C, Lajoie-Leroux F, Soucy G, et al. Spodumene: the lithium market, resources and processes[J]. Minerals, 2019, 9(6): 334. |
38 | Li H, Eksteen J, Kuang G. Recovery of lithium from mineral resources: state-of-the-art and perspectives — a review[J]. Hydrometallurgy, 2019, 189: 105129. |
39 | Taviot-Guého C, Prévot V, Forano C, et al. Tailoring hybrid layered double hydroxides for the development of innovative applications[J]. Advanced Functional Materials, 2018, 28(27): 1703868. |
40 | Goh K H, Lim T T, Dong Z L. Application of layered double hydroxides for removal of oxyanions: a review[J]. Water Research, 2008, 42(6/7): 1343-1368. |
41 | Lin S, Pan Y N, Du J L, et al. Double-edged role of interlayer water on Li+ extraction from ultrahigh Mg2+/Li+ ratio brines using Li/Al-LDHs[J]. Journal of Colloid and Interface Science, 2022, 627: 872-879. |
42 | Liu H M, Zhao X J, Zhu Y Q, et al. DFT study on MgAl-layered double hydroxides with different interlayer anions: structure, anion exchange, host-guest interaction and basic sites[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(4): 2521-2529. |
43 | Miyata S. Anion-exchange properties of hydrotalcite-like compounds[J]. Clays and Clay Minerals, 1983, 31(4): 305-311. |
44 | Newman S P, Synthesis Jones W., characterization and applications of layered double hydroxides containing organic guests[J]. New Journal of Chemistry, 1998, 22(2): 105-115. |
45 | Graham T R, Hu J Z, Zhang X, et al. Unraveling gibbsite transformation pathways into LiAl-LDH in concentrated lithium hydroxide[J]. Inorganic Chemistry, 2019, 58(18): 12385-12394. |
46 | Isupov V P, Gabuda S P, Kozlova S G, et al. Structural mechanism of selective binding of lithium on a solid matrix of Al(OH)3 from aqueous solutions[J]. Journal of Structural Chemistry, 1998, 39(3): 362-366. |
47 | Li Y Y, Tang N, Zhang L, et al. Fabrication of Fe-doped lithium-aluminum-layered hydroxide chloride with enhanced reusable stability inspired by computational theory and its application in lithium extraction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130641. |
48 | Pauwels H, Brach M, Fouillac C. Study of Li+ adsorption onto polymeric aluminium (Ⅲ) hydroxide for application in the treatment of geothermal waters[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100: 73-82. |
49 | Williams G R, O'Hare D. A kinetic study of the intercalation of lithium salts into Al(OH)3 [J]. The Journal of Physical Chemistry B, 2006, 110(22): 10619-10629. |
50 | Hawash S, Kader E A, Diwani G E. Methodology for selective adsorption of lithium ions onto polymeric aluminium (Ⅲ)[J]. Hydroxide, 2010, 6(11): 301-309. |
51 | Heidari N, Momeni P. Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide[J]. Environmental Earth Sciences, 2017, 76(16): 551. |
52 | Menzheres L T, Ryabtsev A D, Mamylova E V. Synthesis of selective sorbent LiCl·2Al(OH)3·nH2O[J]. Theoretical Foundations of Chemical Engineering, 2019, 53(5): 821-826. |
53 | Paranthaman M P, Li L, Luo J Q, et al. Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents[J]. Environmental Science & Technology, 2017, 51(22): 13481-13486. |
54 | Liu X H, Zhong M L, Chen X Y, et al. Separating lithium and magnesium in brine by aluminum-based materials[J]. Hydrometallurgy, 2018, 176: 73-77. |
55 | Sun Y, Guo X Y, Hu S F, et al. Highly efficient extraction of lithium from salt lake brine by LiAl-layered double hydroxides as lithium-ion-selective capturing material[J]. Journal of Energy Chemistry, 2019, 34: 80-87. |
56 | Jiang H X, Zhang S Y, Yang Y, et al. Synergic and competitive adsorption of Li-Na-MgCl2 onto lithium-aluminum hydroxides[J]. Adsorption, 2020, 26(7): 1039-1049. |
57 | Zhong J, Lin S, Yu J G. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines[J]. Desalination, 2021, 505: 114983. |
58 | Hu F P, Lin S, Li P, et al. Quantitative effects of desorption intensity on structural stability and readsorption performance of lithium/aluminum layered double hydroxides in cyclic Li+ extraction from brines with ultrahigh Mg/Li ratio[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13539-13548. |
59 | Chen J, Yuan H F, Yu J G, et al. Regulating lithium extraction based on intercalated S O 4 2 - in Li/Al-LDHs[J]. Journal of Colloid and Interface Science, 2023, 649: 694-702. |
60 | Lee Y J, Cha J H, Jung D Y. Selective lithium adsorption of silicon oxide coated lithium aluminum layered double hydroxide nanocrystals and their regeneration[J]. Chemistry - An Asian Journal, 2021, 16(8): 974-980. |
61 | Lee Y J, Jung D Y. Lithium intercalation and deintercalation of thermally decomposed LiAl2-layered double hydroxides[J]. Applied Clay Science, 2022, 228: 106631. |
62 | Zhong J, Lin S, Yu J G. Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides[J]. Journal of Colloid and Interface Science, 2020, 572: 107-113. |
63 | Zhong J, Lin S, Yu J G. Lithium recovery from ultrahigh Mg2+/Li+ ratio brine using a novel granulated Li/Al-LDHs adsorbent[J]. Separation and Purification Technology, 2021, 256: 117780. |
64 | Chen J, Du J L, Yu J G, et al. A one-step regeneration method in situ for deactivated aluminum-based lithium adsorbent used in high Mg2+/Li+ brines[J]. Desalination, 2023, 554: 116491. |
65 | Zhou J, Lin Z, Ren H, et al. Layered intercalation materials[J]. Advanced Materials, 2021, 33(25): 2004557. |
66 | Zhu S D, Khan M A, Wang F Y, et al. Rapid removal of toxic metals Cu2+ and Pb2+ by amino trimethylene phosphonic acid intercalated layered double hydroxide: a combined experimental and DFT study[J]. Chemical Engineering Journal, 2020, 392: 123711. |
67 | Ma L J, Islam S M, Xiao C L, et al. Rapid simultaneous removal of toxic anions [HSeO3]-, [SeO3]2-, and [SeO4]2-, and metals Hg2+, Cu2+, and Cd2+ by M o S 4 2 - intercalated layered double hydroxide[J]. Journal of the American Chemical Society, 2017, 139(36): 12745-12757. |
68 | Yang L X, Xie L X, Chu M L, et al. M o 3 S 13 2 - intercalated layered double hydroxide: highly selective removal of heavy metals and simultaneous reduction of Ag+ ions to metallic Ag0 ribbons[J]. Angewandte Chemie (International Ed. in English), 2022, 61(1): e202112511. |
69 | Lv S, Zhao Y L, Zhang L J, et al. Anion regulation strategy of lithium-aluminum layered double hydroxides for strengthening resistance to deactivation in lithium recovery from brines[J]. Chemical Engineering Journa, 2023, 472: 145026. |
70 | Li J, Luo Q L, Dong M Z, et al. Synthesis of granulated Li/Al-LDHs adsorbent and application for recovery of Li from synthetic and real salt lake brines[J]. Hydrometallurgy, 2022, 209: 105828. |
71 | Xu H, Yuan H F, Yu J G, et al. Study on the competitive adsorption and correlational mechanism for heavy metal ions using the carboxylated magnetic iron oxide nanoparticles (MNPs-COOH) as efficient adsorbents[J]. Applied Surface Science, 2019, 473: 960-966. |
72 | Chen J, Lin S, Yu J G. High-selective cyclic adsorption and magnetic recovery performance of magnetic lithium-aluminum layered double hydroxides (MLDHs) in extracting Li+ from ultrahigh Mg/Li ratio brines[J]. Separation and Purification Technology, 2021, 255: 117710. |
73 | Yu T M, Caroline Reis Meira A, Cristina Kreutz J, et al. Exploring the surface reactivity of the magnetic layered double hydroxide lithium-aluminum: an alternative material for sorption and catalytic purposes[J]. Applied Surface Science, 2019, 467/468: 1195-1203. |
74 | Luo Q L, Dong M Z, Li Q, et al. Improve the durability of lithium adsorbent Li/Al-LDHs by Fe3+ substitution and nanocomposite of FeOOH[J]. Minerals Engineering, 2022, 185: 107717. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[4] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[5] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[6] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[7] | 赵志萍, 陈晨, 汤琼, 徐红, 刘雷, 董晋湘. 多己基萘/聚α-烯烃锂基润滑脂的流变学和摩擦学性能[J]. 化工学报, 2023, 74(6): 2555-2564. |
[8] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[9] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[10] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[11] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[12] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[13] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[14] | 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359. |
[15] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||