化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3681-3690.DOI: 10.11949/0438-1157.20240357
于嘉朋1(), 徐娜1(
), 张玮1(
), 康清源1, 张鸿1, 秦睦轩1, 方嘉宾2
收稿日期:
2024-04-01
修回日期:
2024-05-27
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
徐娜,张玮
作者简介:
于嘉朋(1999—),男,硕士研究生,1017707327@qq.com
基金资助:
Jiapeng YU1(), Na XU1(
), Wei ZHANG1(
), Qingyuan KANG1, Hong ZHANG1, Muxuan QIN1, Jiabin FANG2
Received:
2024-04-01
Revised:
2024-05-27
Online:
2024-10-25
Published:
2024-11-04
Contact:
Na XU, Wei ZHANG
摘要:
气液微磺化技术因其安全、高效、低成本,是一种极具发展潜力的新型磺化方法。但由于磺化反应体系高黏的特点,在小尺寸通道内流动时压降非常大,显著提高微反应器能耗,实现微反应器高效热质传递性能与气液磺化反应体系高压降之间的优化调控对气液微磺化技术的实际推广应用具有重要意义。通过实验测试研究了气液微磺化反应过程的压降特性及各影响因素的作用机制,并基于量纲分析法建立了4种不同结构微反应器的气液磺化收率与能耗预测模型。为了实现高产率和低能耗,采用改进的NSGA-Ⅱ算法优化影响磺化产物收率和反应过程能耗的关键工艺参数。其中C-ES(十字形混合区+含膨胀单元的直通道反应区)型微反应器内,在气速为6.422 m/s、液速为0.0147 m/s、反应时间为91.464 min条件下,收率达到89.771%,能耗仅1.609 kW/t,证明C-ES型微反应器有效传质效率高,在低能耗下能显著强化气液两相传质性能。以上研究可为以高收率、低能耗为目标的微反应器结构设计及操作条件优化提供理论依据。
中图分类号:
于嘉朋, 徐娜, 张玮, 康清源, 张鸿, 秦睦轩, 方嘉宾. 微反应器内气液磺化反应收率和能耗建模及多目标优化[J]. 化工学报, 2024, 75(10): 3681-3690.
Jiapeng YU, Na XU, Wei ZHANG, Qingyuan KANG, Hong ZHANG, Muxuan QIN, Jiabin FANG. Modeling and multi-objective optimization of yield and energy consumption of gas-liquid sulfonation reaction in microreactor[J]. CIESC Journal, 2024, 75(10): 3681-3690.
R2 | F | P |
---|---|---|
0.9912 | 753.7714 | 908839×10-21 |
表1 模型的统计学评价
Table 1 Statistical evaluation of model
R2 | F | P |
---|---|---|
0.9912 | 753.7714 | 908839×10-21 |
模型 | R2 | F | P |
---|---|---|---|
T-S | 0.8898 | 110.4042 | 1.1296×10-19 |
C-S | 0.9087 | 135.9961 | 2.4413×10-21 |
CT-S | 0.9087 | 135.984 | 2.4453×10-21 |
C-ES | 0.8746 | 95.3154 | 1.5988×10-18 |
表2 4个模型的统计学评价
Table 2 Statistical evaluation of four models
模型 | R2 | F | P |
---|---|---|---|
T-S | 0.8898 | 110.4042 | 1.1296×10-19 |
C-S | 0.9087 | 135.9961 | 2.4413×10-21 |
CT-S | 0.9087 | 135.984 | 2.4453×10-21 |
C-ES | 0.8746 | 95.3154 | 1.5988×10-18 |
工艺条件 | 最低值 | 最高值 |
---|---|---|
气速vg /(m/s) | 6.4 | 25.6 |
液速vl /(m/s) | 0.0051 | 0.0151 |
反应时间t/min | 50 | 150 |
表3 气液微磺化反应工艺条件的变动范围
Table 3 Range of variation of process conditions for gas-liquid microsulfonation reactions
工艺条件 | 最低值 | 最高值 |
---|---|---|
气速vg /(m/s) | 6.4 | 25.6 |
液速vl /(m/s) | 0.0051 | 0.0151 |
反应时间t/min | 50 | 150 |
微反应器 | 气速 vg/(m/s) | 液速 vl /(m/s) | 反应时间 t/min | MESA 质量分数X/% | 能耗 Φ/(kW/t) |
---|---|---|---|---|---|
T-S | 6.402 | 0.0140 | 124.145 | 76.759 | 2.431 |
C-S | 6.425 | 0.0150 | 119.078 | 76.242 | 1.384 |
CT-S | 6.411 | 0.0145 | 115.456 | 80.150 | 2.461 |
C-ES | 6.422 | 0.0147 | 91.464 | 88.882 | 1.593 |
表4 气液微磺化反应工艺条件的Pareto解
Table 4 Pareto solution for gas-liquid microsulfonation reaction process conditions
微反应器 | 气速 vg/(m/s) | 液速 vl /(m/s) | 反应时间 t/min | MESA 质量分数X/% | 能耗 Φ/(kW/t) |
---|---|---|---|---|---|
T-S | 6.402 | 0.0140 | 124.145 | 76.759 | 2.431 |
C-S | 6.425 | 0.0150 | 119.078 | 76.242 | 1.384 |
CT-S | 6.411 | 0.0145 | 115.456 | 80.150 | 2.461 |
C-ES | 6.422 | 0.0147 | 91.464 | 88.882 | 1.593 |
微反应器 | 气速 vg/(m/s) | 液速 vl /(m/s) | 反应时间 t/min | MESA质量分数 X/% | 能耗预测值 Φpre/(kW/t) | 能耗实验值 Φexp/(kW/t) |
---|---|---|---|---|---|---|
T-S | 6.402 | 0.0140 | 124.145 | 77.527 | 2.431 | 2.479 |
C-S | 6.425 | 0.0150 | 119.078 | 77.767 | 1.384 | 1.398 |
CT-S | 6.411 | 0.0145 | 115.456 | 81.753 | 2.461 | 2.510 |
C-ES | 6.422 | 0.0147 | 91.464 | 89.771 | 1.593 | 1.609 |
表5 实验验证结果
Table 5 Experimental validation results
微反应器 | 气速 vg/(m/s) | 液速 vl /(m/s) | 反应时间 t/min | MESA质量分数 X/% | 能耗预测值 Φpre/(kW/t) | 能耗实验值 Φexp/(kW/t) |
---|---|---|---|---|---|---|
T-S | 6.402 | 0.0140 | 124.145 | 77.527 | 2.431 | 2.479 |
C-S | 6.425 | 0.0150 | 119.078 | 77.767 | 1.384 | 1.398 |
CT-S | 6.411 | 0.0145 | 115.456 | 81.753 | 2.461 | 2.510 |
C-ES | 6.422 | 0.0147 | 91.464 | 89.771 | 1.593 | 1.609 |
1 | Zhao T P, Mu G N. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid[J]. Corrosion Science, 1999, 41(10): 1937-1944. |
2 | Wang Y X, Han Y C, Huang X, et al. Aggregation behaviors of a series of anionic sulfonate gemini surfactants and their corresponding monomeric surfactant[J]. Journal of Colloid and Interface Science, 2008, 319(2): 534-541. |
3 | Kang C Y, Wu J, Zheng Y C, et al. Studies on the surface properties and microaggregates of cationic/anionic surfactant mixtures based on sulfonate gemini surfactant[J]. Journal of Molecular Liquids, 2020, 320: 114431. |
4 | Yang K, Zhu L Z, Xing B S. Sorption of sodium dodecylbenzene sulfonate by montmorillonite[J]. Environmental Pollution, 2007, 145(2): 571-576. |
5 | Marcomini A, Giger W. Behaviour of LAS in sewage treatment[J]. Tenside Surfactants Detergents, 1988, 25(4): 226-229. |
6 | Licklider L, Kuhr W G. Optimization of online peptide mapping by capillary zone electrophoresis[J]. Analytical Chemistry, 1994, 66(24): 4400-4407. |
7 | Yoshida J I, Nagaki A, Yamada T. Flash chemistry: fast chemical synthesis by using microreactors[J]. Chemistry - A European Journal, 2008, 14(25): 7450-7459. |
8 | Geng Y H, Ling S D, Huang J P, et al. Multiphase microfluidics: fundamentals, fabrication, and functions[J]. Small, 2020, 16(6): 1906357. |
9 | Zhang J S, Zhang C Y, Liu G T, et al. Measuring enthalpy of fast exothermal reaction with infrared thermography in a microreactor[J]. Chemical Engineering Journal, 2016, 295: 384-390. |
10 | Whitesides G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373. |
11 | Zhao Y C, Su Y H, Chen G W, et al. Effect of surface properties on the flow characteristics and mass transfer performance in microchannels[J]. Chemical Engineering Science, 2010, 65(5): 1563-1570. |
12 | Lin X Y, Wang K, Zhang J S, et al. Process intensification of the synthesis of poly(vinyl butyral) using a microstructured chemical system[J]. Industrial & Engineering Chemistry Research, 2015, 54(14): 3582-3588. |
13 | Müller A, Cominos V, Hessel V, et al. Fluidic bus system for chemical process engineering in the laboratory and for small-scale production[J]. Chemical Engineering Journal, 2005, 107(1/2/3): 205-214. |
14 | Xie T M, Zeng C F, Wang C Q, et al. Preparation of methyl ester sulfonates based on sulfonation in a falling film microreactor from hydrogenated palm oil methyl esters with gaseous SO3 [J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3714-3722. |
15 | Guo Z Y, Fletcher D F, Haynes B S. Numerical simulation of annular flow hydrodynamics in microchannels[J]. Computers & Fluids, 2016, 133: 90-102. |
16 | Xu X, Xu N, Zhang W, et al. Mass transfer mechanism and relationship of gas-liquid annular flow in a microfluidic cross-junction device[J]. Chinese Journal of Chemical Engineering, 2023, 64: 37-48. |
17 | Roudet M, Loubiere K, Gourdon C, et al. Hydrodynamic and mass transfer in inertial gas-liquid flow regimes through straight and meandering millimetric square channels[J]. Chemical Engineering Science, 2011, 66(13): 2974-2990. |
18 | Li C F, Zhu C Y, Ma Y G, et al. Experimental study on volumetric mass transfer coefficient of CO2 absorption into MEA aqueous solution in a rectangular microchannel reactor[J]. International Journal of Heat and Mass Transfer, 2014, 78: 1055-1059. |
19 | Firuzi S, Sadeghi R. Simulation of carbon dioxide absorption process by aqueous monoethanolamine in a microchannel in annular flow pattern[J]. Microfluidics and Nanofluidics, 2018, 22(10): 109. |
20 | Koleva G, Galabov B, Kong J, et al. Electrophilic aromatic sulfonation with SO3: concerted or classic SEAr mechanism?[J]. Journal of the American Chemical Society, 2011, 133(47): 19094-19101. |
21 | Roberts D W. Optimisation of the linear alkyl benzene sulfonation process for surfactant manufacture[J]. Organic Process Research & Development, 2003, 7(2): 172-184. |
22 | Morley J O, Roberts D W. Molecular modeling studies on aromatic sulfonation. 1. Intermediates formed in the sulfonation of toluene[J]. The Journal of Organic Chemistry, 1997, 62(21): 7358-7363. |
23 | Johnson G R, Crynes B L. Modeling of a thin-film sulfur trioxide sulfonation reactor[J]. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(1): 6-14. |
24 | 梁倩卿, 马学虎, 王凯, 等. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281. |
Liang Q Q, Ma X H, Wang K, et al. Gas-liquid Taylor flow pressure drop in rectangular meandering microchannel[J]. CIESC Journal, 2019, 70(4): 1272-1281. | |
25 | 吕静, 李昶, 石冬冬, 等. 二氧化碳微通道蒸发器压降特性的模拟验证[J]. 化工学报, 2017, 68(5): 1866-1873. |
Lü J, Li C, Shi D D, et al. Simulate verification of CO2 microchannel evaporator pressure drop[J]. CIESC Journal, 2017, 68(5): 1866-1873. | |
26 | 罗小平, 周家玉, 李桂中. 相分离结构微细通道流动沸腾压降分析与可视化[J]. 化工进展, 2023, 42(12): 6157-6170. |
Luo X P, Zhou J Y, Li G Z. Analysis and visualization of flow boiling pressure drop in microchannels with phase separation structure[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6157-6170. | |
27 | 徐肖肖, 陈龙, 肖久旻, 等. 两相流在扁平T型管中压降特性的实验研究[J]. 化工学报, 2018, 69(S2): 174-179. |
Xu X X, Chen L, Xiao J M, et al. Experimental study on pressure drop characteristic of two-phase flow in reduced tee junction with flat tube[J]. CIESC Journal, 2018, 69(S2): 174-179. | |
28 | 邓涛, 林椿松, 李亚南, 等. 基于Pareto原理的HEV能量控制参数NSGA-Ⅱ多目标优化的研究[J]. 汽车工程, 2016, 38(5): 531-537. |
Deng T, Lin C S, Li Y N, et al. A research on NSGA-Ⅱ multi-objective optimization for HEV energy management parameters based on Pareto principle[J]. Automotive Engineering, 2016, 38(5): 531-537. | |
29 | 乔士东, 黄金才, 修保新, 等. 基于NSGA-Ⅱ多目标优化的C2组织设计[J]. 国防科技大学学报, 2009, 31(5): 64-69. |
Qiao S D, Huang J C, Xiu B X, et al. Organizational design of C2 by NSGA-Ⅱ multi-objective optimization algorithm[J]. Journal of National University of Defense Technology, 2009, 31(5): 64-69. | |
30 | 戴海曙, 郭志敏, 翟江, 等. 基于NSGA-Ⅱ的柱塞泵阻尼槽多目标参数优化[J]. 液压与气动, 2023, 47(8): 26-33. |
Dai H S, Guo Z M, Zhai J, et al. Multi-objective parameter optimization of piston pump damping groove based on NSGA-Ⅱ[J]. Chinese Hydraulics & Pneumatics, 2023, 47(8): 26-33. | |
31 | 孟维军, 徐一鸣, 李平, 等. 微通道内连续合成十二烷基苯磺酸的响应面分析及混合过程模拟[J]. 化工进展, 2021, 40(11): 5998-6008. |
Meng W J, Xu Y M, Li P, et al. Response surface analysis and mixing process simulation of continuous synthesis of dodecylbenzene sulfonic acid in microchannels[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5998-6008. | |
32 | Kim S M, Mudawar I. Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows[J]. International Journal of Heat and Mass Transfer, 2012, 55(11/12): 3246-3261. |
33 | Zhang G M, Hung D L S. Temporal investigations of transient fuel spray characteristics from a multi-hole injector using dimensionless analysis[J]. Experimental Thermal and Fluid Science, 2015, 66: 150-159. |
34 | Brown S H. Multiple linear regression analysis: a matrix approach with MATLAB[J]. Alabama Journal of Mathematics, 2009, 34: 1-3. |
35 | Kataoka I, Ishii M, Nakayama A. Entrainment and desposition rates of droplets in annular two-phase flow[J]. International Journal of Heat and Mass Transfer, 2000, 43(9): 1573-1589. |
36 | Li G X, Pu X, Shang M J, et al. Intensification of liquid-liquid two-phase mass transfer in a capillary microreactor system[J]. AIChE Journal, 2019, 65(1): 334-346. |
[1] | 杨子驰, 谢冰琪, 石瑞莘, 雷虹, 陈晨, 周才金, 张吉松. 套管膜式微反应器内高效安全的气液传质-反应过程研究进展[J]. 化工学报, 2024, 75(9): 3011-3027. |
[2] | 薛潇, 商敏静, 苏远海. 微反应器内药物连续流合成的研究进展[J]. 化工学报, 2024, 75(4): 1439-1454. |
[3] | 何宇航, 谢丹, 吕阳成. 微反应器内阳离子聚合研究进展[J]. 化工学报, 2024, 75(4): 1302-1316. |
[4] | 陈饶, 赵鑫, 陈戴欣, 姜圣坤, 廉应江, 王金波, 杨梅, 陈光文. 微反应器内甲苯连续二硝化制备二硝基甲苯[J]. 化工学报, 2024, 75(3): 867-876. |
[5] | 王法军, 陈安, 徐建鸿. 微反应器内颜料红57连续化合成工艺[J]. 化工学报, 2024, 75(10): 3600-3609. |
[6] | 王婷, 王忠东, 项星宇, 何呈祥, 朱春英, 马友光, 付涛涛. 微反应器内环酯类锂电池添加剂合成研究进展[J]. 化工学报, 2024, 75(1): 95-109. |
[7] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[8] | 付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783. |
[9] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[10] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
[11] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[12] | 李晨亚, 刘捷, 王建芝, 刘艳萍, 林笑, 喻发全. 螺旋微通道反应器贝克曼重排制备己内酰胺[J]. 化工学报, 2023, 74(10): 4182-4190. |
[13] | 顾仁杰, 张加威, 靳雪阳, 文利雄. 微撞击流反应器制备镍钴复合氢氧化物超级电容器材料及其性能研究[J]. 化工学报, 2022, 73(8): 3749-3757. |
[14] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
[15] | 张经纬, 周弋惟, 陈卓, 徐建鸿. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||