化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3681-3690.DOI: 10.11949/0438-1157.20240357

• 过程系统工程 • 上一篇    下一篇

微反应器内气液磺化反应收率和能耗建模及多目标优化

于嘉朋1(), 徐娜1(), 张玮1(), 康清源1, 张鸿1, 秦睦轩1, 方嘉宾2   

  1. 1.太原理工大学化学工程与技术学院,化学产品工程山西省重点实验室,山西 太原 030024
    2.西安交通大学化学工程与技术学院,西安市一碳化合物生物转化技术重点实验室,陕西 西安 710049
  • 收稿日期:2024-04-01 修回日期:2024-05-27 出版日期:2024-10-25 发布日期:2024-11-04
  • 通讯作者: 徐娜,张玮
  • 作者简介:于嘉朋(1999—),男,硕士研究生,1017707327@qq.com
  • 基金资助:
    国家自然科学基金项目(22178241);化学工程联合国家重点实验室开放课题(SKL-ChE-21A01);西安市一碳化合物生物转化技术重点实验室开放课题

Modeling and multi-objective optimization of yield and energy consumption of gas-liquid sulfonation reaction in microreactor

Jiapeng YU1(), Na XU1(), Wei ZHANG1(), Qingyuan KANG1, Hong ZHANG1, Muxuan QIN1, Jiabin FANG2   

  1. 1.Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Xi’an Laboratory of Carbon Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2024-04-01 Revised:2024-05-27 Online:2024-10-25 Published:2024-11-04
  • Contact: Na XU, Wei ZHANG

摘要:

气液微磺化技术因其安全、高效、低成本,是一种极具发展潜力的新型磺化方法。但由于磺化反应体系高黏的特点,在小尺寸通道内流动时压降非常大,显著提高微反应器能耗,实现微反应器高效热质传递性能与气液磺化反应体系高压降之间的优化调控对气液微磺化技术的实际推广应用具有重要意义。通过实验测试研究了气液微磺化反应过程的压降特性及各影响因素的作用机制,并基于量纲分析法建立了4种不同结构微反应器的气液磺化收率与能耗预测模型。为了实现高产率和低能耗,采用改进的NSGA-Ⅱ算法优化影响磺化产物收率和反应过程能耗的关键工艺参数。其中C-ES(十字形混合区+含膨胀单元的直通道反应区)型微反应器内,在气速为6.422 m/s、液速为0.0147 m/s、反应时间为91.464 min条件下,收率达到89.771%,能耗仅1.609 kW/t,证明C-ES型微反应器有效传质效率高,在低能耗下能显著强化气液两相传质性能。以上研究可为以高收率、低能耗为目标的微反应器结构设计及操作条件优化提供理论依据。

关键词: 微反应器, 气液磺化, 磺化收率模型, 能耗预测模型, 多目标优化

Abstract:

Gas-liquid microsulfonation technology is a new sulfonation method with great development potential because of its safety, efficiency, and low cost. However, due to the high viscosity of the sulfonation reaction system, the pressure drop is huge when flowing in small-sized channels, which significantly increases the energy consumption of the microreactor. Therefore, realizing the optimal regulation between the efficient heat and mass transfer performance of the microreactor and the high-pressure drop of the gas-liquid sulfonation reaction system is vital for the practical promotion and application of the gas-liquid microsulfonation technology. In this paper, the pressure drop characteristics of the gas-liquid microsulfonation reaction process and the role mechanisms of the influencing factors were investigated through experimental tests, and the prediction models of the gas-liquid sulfonation yield and energy consumption of four different structures of microreactors were established based on the method of magnitude analysis. In order to achieve high yield and low energy consumption, the improved NSGA-Ⅱ algorithm was used to optimize the critical process parameters affecting the yield of sulfonation products and energy consumption of the reaction process. The C-ES (cross-shaped mixing zone + through-channel reaction zone with expansion unit) type microreactor achieved 89.771% yield and only 1.609 kW/t energy consumption at a gas velocity of 6.422 m/s, a liquid velocity of 0.0147 m/s, and a reaction time of 91.464 min, which demonstrated that the C-ES microreactor has high effective mass transfer efficiency and can significantly enhance the mass transfer between gas and liquid phases at low energy consumption. It proves that the C-ES microreactor has high effective mass transfer efficiency and can enhance the gas-liquid two-phase mass transfer with low energy consumption. The above study provides a theoretical basis for the design of microreactor structure and optimization of operating conditions aiming at high yield and low energy consumption.

Key words: microreactor, gas-liquid sulfonation, sulfonation yield model, energy consumption prediction model, multi-objective optimization

中图分类号: