化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3669-3680.DOI: 10.11949/0438-1157.20240296
收稿日期:
2024-03-14
修回日期:
2024-06-06
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
朱佳媚
作者简介:
赵非凡(2001—),男,硕士研究生,zhaofeifan135@163.com
基金资助:
Feifan ZHAO(), Jiamei ZHU(
), Jie KANG, Liang TAN, Jingyu DUAN
Received:
2024-03-14
Revised:
2024-06-06
Online:
2024-10-25
Published:
2024-11-04
Contact:
Jiamei ZHU
摘要:
为拓展和探究离子液体在挥发性有机物(VOCs)吸收领域的潜在应用和机理,以乙醚、丙酮和二氯甲烷为VOCs代表,模拟计算了三种季类离子液体(PILs),即三丁基(丙基)季
四氟硼酸盐([P4443][BF4])、三丁基(丙基)季
双三氟甲基磺酰亚胺盐([P4443][Tf2N])、三丁基(丙基)季
三氟乙酸盐([P4443][CF3COO])吸收单分子和多分子VOCs的活性位点、氢键、吸收能(Eabs)、电荷等。研究表明,PILs与三种VOCs之间均形成了氢键并伴随电荷转移,阴离子对乙醚和丙酮吸收的影响不显著;阴离子对二氯甲烷的吸收则起主要作用,[CF3COO]-的Eabs值明显较大。[P4443]+类离子对一般具有3个类似的吸收活性位点,其容纳VOCs分子的空间主要由阳离子提供。离子液体的双离子对空间结构分析表明,由碱性弱且体积较大阴离子组成的PILs更容易暴露其吸收位点。实验研究进一步表明,相比咪唑类离子液体,PILs表现出优异的VOCs吸收能力。
中图分类号:
赵非凡, 朱佳媚, 康洁, 檀亮, 段靖瑜. 三丁基(丙基)季离子液体对VOCs的吸收性能及机理[J]. 化工学报, 2024, 75(10): 3669-3680.
Feifan ZHAO, Jiamei ZHU, Jie KANG, Liang TAN, Jingyu DUAN. Absorption characteristics and mechanism of VOCs by tributyl(propyl)phosphonium ionic liquid[J]. CIESC Journal, 2024, 75(10): 3669-3680.
构型 | Mulliken电荷/e | ||||||
---|---|---|---|---|---|---|---|
[P4443]+ | [BF4]- | [Tf2N]- | [CF3COO]- | 1-乙醚 | 2-乙醚 | 3-乙醚 | |
[P4443][BF4] | 0.898 | -0.9 | — | — | — | — | — |
[P4443][BF4]∙DEE | 0.89 | -0.902 | — | — | 0.009 | — | — |
[P4443][BF4]∙2DEE | 0.887 | -0.893 | — | — | 0.010 | -0.007 | — |
[P4443][BF4]∙3DEE | 0.882 | -0.891 | — | — | 0.008 | -0.004 | 0.005 |
[P4443][Tf2N] | 0.928 | — | -0.930 | — | — | — | — |
[P4443][Tf2N]∙DEE | 0.913 | — | -0.924 | — | 0.013 | — | — |
[P4443][Tf2N]∙2DEE | 0.912 | — | -0.931 | — | 0.009 | 0.009 | — |
[P4443][Tf2N]∙3DEE | 0.901 | — | -0.930 | — | 0.009 | 0.010 | 0.009 |
[P4443][CF3COO] | 0.832 | — | — | -0.831 | — | — | — |
[P4443][CF3COO]∙DEE | 0.826 | — | — | -0.833 | 0.007 | — | — |
[P4443][CF3COO]∙2DEE | 0.828 | — | — | -0.833 | 0.002 | 0.006 | — |
[P4443][CF3COO]∙3DEE | 0.842 | — | — | -0.834 | 0.002 | 0.003 | -0.011 |
表1 PILs与PIL∙nDEE中阴阳离子和被吸收乙醚的Mulliken电荷总和
Table 1 The sum of Mulliken charge of cations, anions and the absorbed ether in PILs and PIL∙nDEE
构型 | Mulliken电荷/e | ||||||
---|---|---|---|---|---|---|---|
[P4443]+ | [BF4]- | [Tf2N]- | [CF3COO]- | 1-乙醚 | 2-乙醚 | 3-乙醚 | |
[P4443][BF4] | 0.898 | -0.9 | — | — | — | — | — |
[P4443][BF4]∙DEE | 0.89 | -0.902 | — | — | 0.009 | — | — |
[P4443][BF4]∙2DEE | 0.887 | -0.893 | — | — | 0.010 | -0.007 | — |
[P4443][BF4]∙3DEE | 0.882 | -0.891 | — | — | 0.008 | -0.004 | 0.005 |
[P4443][Tf2N] | 0.928 | — | -0.930 | — | — | — | — |
[P4443][Tf2N]∙DEE | 0.913 | — | -0.924 | — | 0.013 | — | — |
[P4443][Tf2N]∙2DEE | 0.912 | — | -0.931 | — | 0.009 | 0.009 | — |
[P4443][Tf2N]∙3DEE | 0.901 | — | -0.930 | — | 0.009 | 0.010 | 0.009 |
[P4443][CF3COO] | 0.832 | — | — | -0.831 | — | — | — |
[P4443][CF3COO]∙DEE | 0.826 | — | — | -0.833 | 0.007 | — | — |
[P4443][CF3COO]∙2DEE | 0.828 | — | — | -0.833 | 0.002 | 0.006 | — |
[P4443][CF3COO]∙3DEE | 0.842 | — | — | -0.834 | 0.002 | 0.003 | -0.011 |
构型 | Mulliken电荷/e | ||||||
---|---|---|---|---|---|---|---|
[P4443]+ | [BF4]- | [Tf2N]- | [CF3COO]- | 1-丙酮 | 2-丙酮 | 3-丙酮 | |
[P4443][BF4]∙DMK | 0.890 | -0.897 | — | — | 0.006 | — | — |
[P4443][BF4]∙2DMK | 0.888 | -0.896 | — | — | 0.005 | 0.006 | — |
[P4443][BF4]∙3DMK | 0.887 | -0.879 | — | — | -0.002 | -0.001 | -0.003 |
[P4443][Tf2N]∙DMK | 0.913 | -0.926 | 0.011 | — | — | ||
[P4443][Tf2N]∙2DMK | 0.917 | — | -0.928 | — | 0.005 | 0.009 | — |
[P4443][Tf2N]∙3DMK | 0.912 | — | -0.928 | — | 0.009 | 0.009 | -0.001 |
[P4443][CF3COO]∙DMK | 0.849 | — | — | -0.845 | -0.007 | — | — |
[P4443][CF3COO]∙2DMK | 0.864 | — | — | -0.848 | -0.006 | -0.010 | — |
[P4443][CF3COO]∙3DMK | 0.866 | — | — | -0.847 | -0.006 | -0.007 | -0.006 |
表2 PILs 与 PIL∙nDMK中阴阳离子和被吸收丙酮的Mulliken电荷总和
Table 2 The sum of Mulliken charge of cations, anions and the absorbed acetone in PILs and PIL∙nDMK
构型 | Mulliken电荷/e | ||||||
---|---|---|---|---|---|---|---|
[P4443]+ | [BF4]- | [Tf2N]- | [CF3COO]- | 1-丙酮 | 2-丙酮 | 3-丙酮 | |
[P4443][BF4]∙DMK | 0.890 | -0.897 | — | — | 0.006 | — | — |
[P4443][BF4]∙2DMK | 0.888 | -0.896 | — | — | 0.005 | 0.006 | — |
[P4443][BF4]∙3DMK | 0.887 | -0.879 | — | — | -0.002 | -0.001 | -0.003 |
[P4443][Tf2N]∙DMK | 0.913 | -0.926 | 0.011 | — | — | ||
[P4443][Tf2N]∙2DMK | 0.917 | — | -0.928 | — | 0.005 | 0.009 | — |
[P4443][Tf2N]∙3DMK | 0.912 | — | -0.928 | — | 0.009 | 0.009 | -0.001 |
[P4443][CF3COO]∙DMK | 0.849 | — | — | -0.845 | -0.007 | — | — |
[P4443][CF3COO]∙2DMK | 0.864 | — | — | -0.848 | -0.006 | -0.010 | — |
[P4443][CF3COO]∙3DMK | 0.866 | — | — | -0.847 | -0.006 | -0.007 | -0.006 |
构型 | Mulliken电荷/e | ||||||
---|---|---|---|---|---|---|---|
[P4443]+ | [BF4]- | [Tf2N]- | [CF3COO]- | 1-二氯甲烷 | 2-二氯甲烷 | 3-二氯甲烷 | |
[P4443][BF4]∙DCM | 0.895 | -0.891 | — | — | -0.003 | — | — |
[P4443][BF4]∙2DCM | 0.902 | -0.889 | — | — | -0.003 | -0.008 | — |
[P4443][BF4]∙3DCM | 0.893 | -0.885 | — | — | 0.000 | -0.006 | -0.001 |
[P4443][Tf2N]∙DCM | 0.908 | — | -0.915 | — | 0.006 | — | — |
[P4443][Tf2N]∙2DCM | 0.910 | — | -0.908 | — | 0.000 | -0.003 | — |
[P4443][Tf2N]∙3DCM | 0.901 | — | -0.905 | — | 0.002 | -0.005 | -0.001 |
[P4443][CF3COO]∙DCM | 0.837 | — | — | -0.827 | -0.014 | — | — |
[P4443][CF3COO]∙2DCM | 0.840 | — | — | -0.823 | -0.012 | -0.008 | — |
[P4443][CF3COO]∙3DCM | 0.847 | — | — | -0.828 | -0.006 | -0.009 | -0.005 |
表3 PILs与PIL∙nDCM中阴阳离子和被吸收二氯甲烷的Mulliken电荷总和
Table 3 The sum of Mulliken charge of cations, anions and the absorbed dichloromethane in PILs and PIL∙nDCM
构型 | Mulliken电荷/e | ||||||
---|---|---|---|---|---|---|---|
[P4443]+ | [BF4]- | [Tf2N]- | [CF3COO]- | 1-二氯甲烷 | 2-二氯甲烷 | 3-二氯甲烷 | |
[P4443][BF4]∙DCM | 0.895 | -0.891 | — | — | -0.003 | — | — |
[P4443][BF4]∙2DCM | 0.902 | -0.889 | — | — | -0.003 | -0.008 | — |
[P4443][BF4]∙3DCM | 0.893 | -0.885 | — | — | 0.000 | -0.006 | -0.001 |
[P4443][Tf2N]∙DCM | 0.908 | — | -0.915 | — | 0.006 | — | — |
[P4443][Tf2N]∙2DCM | 0.910 | — | -0.908 | — | 0.000 | -0.003 | — |
[P4443][Tf2N]∙3DCM | 0.901 | — | -0.905 | — | 0.002 | -0.005 | -0.001 |
[P4443][CF3COO]∙DCM | 0.837 | — | — | -0.827 | -0.014 | — | — |
[P4443][CF3COO]∙2DCM | 0.840 | — | — | -0.823 | -0.012 | -0.008 | — |
[P4443][CF3COO]∙3DCM | 0.847 | — | — | -0.828 | -0.006 | -0.009 | -0.005 |
离子液体 | 乙醚吸收量/(g·g-1) | 丙酮吸收量/(g·g-1) | 二氯甲烷吸收量/(g·g-1) | 测试条件 | 文献 |
---|---|---|---|---|---|
[P4443][BF4] | 0.5644 | 1.5615 | 1.774 | 25℃, 50 kPa | 本文 |
[P4443][Tf2N] | 0.7123 | 1.5773 | 1.239 | 25℃, 50 kPa | 本文 |
[P4443][CF3COO] | 0.7378 | 1.5272 | 2.510 | 25℃, 50 kPa | 本文 |
[BMIM][BF4] | 0.2345 | 1.5484 | 0.956 | 25℃, 50 kPa | 本文 |
[BMIM][SCN] | — | — | 0.85 | 30℃, 50 kPa | [ |
[BMIM][Tf2N] | — | — | 0.38 | 30℃, 50 kPa | [ |
[OMIM][BF4] | — | — | 0.89 | 30℃, 50 kPa | [ |
[EMIM][CF3COO] | — | — | 1.047 | 30℃,0.03 MPa | [ |
表4 与文献对比分析离子液体的VOCs静态吸收容量
Table 4 Static absorption capacity of ionic liquids for VOCs compared with references
离子液体 | 乙醚吸收量/(g·g-1) | 丙酮吸收量/(g·g-1) | 二氯甲烷吸收量/(g·g-1) | 测试条件 | 文献 |
---|---|---|---|---|---|
[P4443][BF4] | 0.5644 | 1.5615 | 1.774 | 25℃, 50 kPa | 本文 |
[P4443][Tf2N] | 0.7123 | 1.5773 | 1.239 | 25℃, 50 kPa | 本文 |
[P4443][CF3COO] | 0.7378 | 1.5272 | 2.510 | 25℃, 50 kPa | 本文 |
[BMIM][BF4] | 0.2345 | 1.5484 | 0.956 | 25℃, 50 kPa | 本文 |
[BMIM][SCN] | — | — | 0.85 | 30℃, 50 kPa | [ |
[BMIM][Tf2N] | — | — | 0.38 | 30℃, 50 kPa | [ |
[OMIM][BF4] | — | — | 0.89 | 30℃, 50 kPa | [ |
[EMIM][CF3COO] | — | — | 1.047 | 30℃,0.03 MPa | [ |
1 | 张智, 马修卫, 李津津, 等. 中高温环境下VOCs在活性炭上的吸附性能研究[J]. 化工学报, 2019, 70(12): 4811-4820. |
Zhang Z, Ma X W, Li J J, et al. Study on adsorption capacity of VOCs on activated carbon at medium-high temperature[J]. CIESC Journal, 2019, 70(12): 4811-4820. | |
2 | 孟博文, 李永波, 孟晶, 等. 我国经济快速发展区工业VOCs排放特征及管控对策[J]. 环境科学, 2021, 42(3): 1023-1038. |
Meng B W, Li Y B, Meng J, et al. Industrial emission characteristics and control countermeasures of VOCs in Chinese rapid economic development areas[J]. Environmental Science, 2021, 42(3): 1023-1038. | |
3 | He L, Duan Y S, Zhang Y, et al. Effects of VOC emissions from chemical industrial parks on regional O 3 - PM2.5 compound pollution in the Yangtze River Delta[J]. Science of the Total Environment, 2024, 906: 167503. |
4 | Biard P F, Couvert A, Giraudet S. Volatile organic compounds absorption in packed column: theoretical assessment of water, DEHA and PDMS50 as absorbents[J]. Journal of Industrial and Engineering Chemistry, 2018, 59: 70-78. |
5 | Davarpanah M, Hashisho Z, Crompton D, et al. Modeling VOC adsorption in lab- and industrial-scale fluidized bed adsorbers: effect of operating parameters and heel build-up[J]. Journal of Hazardous Materials, 2020, 400: 123129. |
6 | Wu Z Q, Cao X W, Li M, et al. Treatment of volatile organic compounds and other waste gases using membrane biofilm reactors: a review on recent advancements and challenges[J]. Chemosphere, 2024, 349: 140843. |
7 | Campesi M A, Luzi C D, Barreto G F, et al. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration[J]. Journal of Environmental Management, 2015, 154: 216-224. |
8 | Lou B Z, Shakoor N, Adeel M, et al. Catalytic oxidation of volatile organic compounds by non-noble metal catalyst: current advancement and future prospectives[J]. Journal of Cleaner Production, 2022, 363: 132523. |
9 | Makoś-Chełstowska P. VOCs absorption from gas streams using deep eutectic solvents—a review[J]. Journal of Hazardous Materials, 2023, 448: 130957. |
10 | 武宁, 杨忠凯, 李玉, 等. 挥发性有机物治理技术研究进展[J]. 现代化工, 2020, 40(2): 17-22. |
Wu N, Yang Z K, Li Y, et al. Research progress in VOCs treatment technology[J]. Modern Chemical Industry, 2020, 40(2): 17-22. | |
11 | Wang L Y, Zhang Y J, Liu Y, et al. SO2 absorption in pure ionic liquids: solubility and functionalization[J]. Journal of Hazardous Materials, 2020, 392: 122504. |
12 | Mu M L, Zhang X F, Yu G Q, et al. Deep removal of chlorobenzene based volatile organic compounds from exhaust gas with ionic liquids[J]. Separation and Purification Technology, 2022, 298: 121610. |
13 | Fahri F, Bacha K, Chiki F F, et al. Air pollution: new bio-based ionic liquids absorb both hydrophobic and hydrophilic volatile organic compounds with high efficiency[J]. Environmental Chemistry Letters, 2020, 18(4): 1403-1411. |
14 | Sharma P, Sharma S, Kumar H. Introduction to ionic liquids, applications and micellization behaviour in presence of different additives[J]. Journal of Molecular Liquids, 2024, 393: 123447. |
15 | Goutham R, Rohit P, Vigneshwar S S, et al. Ionic liquids in wastewater treatment: a review on pollutant removal and degradation, recovery of ionic liquids, economics and future perspectives[J]. Journal of Molecular Liquids, 2022, 349: 118150. |
16 | Zhang W L, Luo J P, Sun T F, et al. The absorption performance of ionic liquids—PEG200 complex absorbent for VOCs[J]. Energies, 2021, 14(12): 3592. |
17 | Xu R N, Dai C N, Mu M L, et al. Highly efficient capture of odorous sulfur-based VOCs by ionic liquids[J]. Journal of Hazardous Materials, 2021, 402: 123507. |
18 | Yu G Q, Dai C N, Gao H, et al. Capturing condensable gases with ionic liquids[J]. Industrial & Engineering Chemistry Research, 2018, 57(36): 12202-12214. |
19 | Zhao X, Xing H B, Yang Q W, et al. Differential solubility of ethylene and acetylene in room-temperature ionic liquids: a theoretical study[J]. The Journal of Physical Chemistry B, 2012, 116(13): 3944-3953. |
20 | Zheng Y Z, Chen H, Zhou Y, et al. Microscopic properties of two 1-(2′-hydroxylethyl)-3-methylimidazolium-based ionic liquids and methanol mixtures[J]. Journal of Molecular Liquids, 2020, 313: 113578. |
21 | Gui C M, Li G X, Zhu R S, et al. Capturing VOCs in the pharmaceutical industry with ionic liquids[J]. Chemical Engineering Science, 2022, 252: 117504. |
22 | Song M H, Gui C M, Lei Z G. Experimental and simulation studies on the capture of chlorinated volatile organic compounds by ionic liquids[J]. Industrial & Engineering Chemistry Research, 2023, 62(26): 10184-10194. |
23 | Mu M L, Yu G Q, Zhang X F, et al. Deep removal of dichloromethane using ionic liquids: thermodynamic and molecular insights[J]. Chemical Engineering Science, 2024, 284: 119498. |
24 | Wang X, Zhang M J, Li L C, et al. Supported fluorine-free ionic liquids with highly sensitive gas-sensing performance[J]. Journal of Molecular Liquids, 2023, 390: 123122. |
25 | Kianpour E, Azizian S, Yarie M, et al. A task-specific phosphonium ionic liquid as an efficient extractant for green desulfurization of liquid fuel: an experimental and computational study[J]. Chemical Engineering Journal, 2016, 295: 500-508. |
26 | Macarie L, Simulescu V, Ilia G. Phosphonium-based ionic liquids used as reagents or catalysts[J]. ChemistrySelect, 2019, 4(32): 9285-9299. |
27 | Cao Y Y, Mu T C. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(20): 8651-8664. |
28 | Freire M G, Neves C M S S, Marrucho I M, et al. Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids[J]. The Journal of Physical Chemistry A, 2010, 114(11): 3744-3749. |
29 | Solomon K R, Velders G J M, Wilson S R, et al. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: relevance to substances regulated under the Montreal and Kyoto Protocols[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2016, 19(7): 289-304. |
30 | Arjomand Kermani N, Petrushina I, Rokni M M. Evaluation of ionic liquids as replacements for the solid piston in conventional hydrogen reciprocating compressors: a review[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16337-16354. |
31 | Tan L, Zhu J M, He X D, et al. The mechanism of toluene absorption by phosphonium ionic liquids with multiple sites[J]. Journal of Molecular Liquids, 2021, 331: 115501. |
32 | 魏显珍, 赵玉海, 赵斌, 等. 典型印刷工业VOCs排放特征及其污染防治效果分析[J]. 能源环境保护, 2022, 36(4): 91-98. |
Wei X Z, Zhao Y H, Zhao B, et al. Emission characteristics of VOCs from the typical printing industry and control performance by pollution prevention facilities[J]. Energy Environmental Protection, 2022, 36(4): 91-98. | |
33 | 党在清. 涂料生产企业挥发性有机物治理工艺技术及效果分析[J]. 中国石油和化工标准与质量, 2023, 43(24): 190-192. |
Dang Z Q. Treatment technology and effect analysis of volatile organic compounds in coating production enterprises[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(24): 190-192. | |
34 | 汪前胜. 医药化工行业VOC废气治理存在的问题及改进措施[J]. 化工管理, 2022(8): 35-37. |
Wang Q S. Problems and improvement measures of VOC waste gas treatment in pharmaceutical and chemical industry[J]. Chemical Management, 2022(8): 35-37. | |
35 | 王瑞文, 张春林, 丁航, 等. 电子制造业塑料件生产过程的挥发性有机物排放特征分析[J]. 环境科学学报, 2019, 39(1): 4-12. |
Wang R W, Zhang C L, Ding H, et al. Emission characteristics of volatile organic compounds (VOCs) from the production processes of plastic parts in electronic manufacturing industry[J]. Acta Scientiae Circumstantiae, 2019, 39(1): 4-12. | |
36 | Cui Y H, Chen Y F, Deng D S, et al. Difference for the absorption of SO2 and CO2 on [P nnnm ][Tetz] (n=1, m=2, and 4) ionic liquids: a density functional theory investigation[J]. Journal of Molecular Liquids, 2014, 199: 7-14. |
37 | Gao T T, Andino J M, Alvarez-Idaboy J R. Computational and experimental study of the interactions between ionic liquids and volatile organic compounds[J]. Physical Chemistry Chemical Physics: PCCP, 2010, 12(33): 9830-9838. |
38 | Kang J, Lu S J, Zhu J M, et al. Absorption performance and mechanism of volatile organic compounds by phosphonium ionic liquids with different anions[J]. Journal of Chemical Technology & Biotechnology, 2024, 99(7): 1541-1552. |
39 | Dong K, Zhang S J, Wang J J. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions[J]. Chemical Communications, 2016, 52(41): 6744-6764. |
40 | Zhang X C, Jiang K, Liu Z P, et al. Insight into the performance of acid gas in ionic liquids by molecular simulation[J]. Industrial & Engineering Chemistry Research, 2019, 58(3): 1443-1453. |
41 | Wu W L, Li T, Gao H S, et al. Efficient absorption of dichloromethane using imidazolium based ionic liquids[J]. The Chinese Journal of Process Engineering, 2019, 19(1): 173-180. |
42 | Gui C M, Li G X, Lei Z G, et al. Experiment and molecular mechanism of two chlorinated volatile organic compounds in ionic liquids[J]. Industrial & Engineering Chemistry Research, 2023, 62(2): 1160-1171. |
[1] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[2] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[3] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[4] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[5] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[6] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[7] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[8] | 童永祺, 程杰, 林海, 陈曦, 赵海波. 10 MWth化学链燃烧反应装置的CPFD模拟[J]. 化工学报, 2024, 75(8): 2949-2959. |
[9] | 李洪瑞, 黄纯西, 洪小东, 廖祖维, 王靖岱, 阳永荣. 基于自适应变步长同伦法的循环流程收敛算法[J]. 化工学报, 2024, 75(7): 2604-2612. |
[10] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
[11] | 韩志敏, 李江, 陈则齐, 刘威, 徐志明. 脉动流通道内不同纵向涡发生器的颗粒污垢特性[J]. 化工学报, 2024, 75(7): 2486-2496. |
[12] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[13] | 杜海燕, 朱凯, 游峰, 王金凤, 赵一帆, 张楠, 李英. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
[14] | 卢飞, 鲁波娜, 许光文. 气固微型流化床反应分析仪的理想流型判据分析[J]. 化工学报, 2024, 75(6): 2201-2213. |
[15] | 黄斌, 丰生杰, 傅程, 张威. 液滴撞击单丝铺展特性的数值研究[J]. 化工学报, 2024, 75(6): 2233-2242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||