化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3472-3482.DOI: 10.11949/0438-1157.20220403
收稿日期:
2022-03-22
修回日期:
2022-06-01
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
陈卓,徐建鸿
作者简介:
张经纬(1998—),男,博士研究生,1158844107@qq.com
基金资助:
Jingwei ZHANG(), Yiwei ZHOU, Zhuo CHEN(), Jianhong XU()
Received:
2022-03-22
Revised:
2022-06-01
Online:
2022-08-05
Published:
2022-09-06
Contact:
Zhuo CHEN, Jianhong XU
摘要:
微反应器一般是指特征尺寸为微米至百微米级的微型反应器,是微化工系统的核心设备之一。与传统的釜式反应器相比,微反应器在危险或易燃易爆产品的合成过程及快反应过程中体现出独特优势。凭借其优异的传热传质性能,微反应器技术使这些危险化工过程变得更精准、更高效、更安全,具有重要的工业应用价值,也是化工领域的重点发展方向之一。本文主要介绍了近年来微反应器技术在医药、农药、染颜料合成等精细化工领域的进展,重点综述了在霍夫曼重排、环加成、重氮化和偶合、烷基化、氮氧化等典型“强放热快反应”有机合成方向的研究进展,并展望了其发展前景。
中图分类号:
张经纬, 周弋惟, 陈卓, 徐建鸿. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482.
Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor[J]. CIESC Journal, 2022, 73(8): 3472-3482.
图2 (a) 制备加巴喷丁的微反应实验装置示意图;(b) 合成反应方程;(c) 微通道的内部结构示意图[21]
Fig.2 (a) Schematic diagram of the microreaction reaction experimental setup for the preparation of Gapentin; (b) Synthesis equation; (c) Schematic diagram of the internal structure of the microchannel[21]
图5 (a)合成颜料红146的偶合反应; (b) 合成颜料红146的微反应系统示意图[52]
Fig.5 (a) Coupling reaction of C.I. PR 146; (b)Experimental setup of the C.I. PR 146 synthesis microreactor system[52]
1 | Hessel V, Kralisch D, Kockmann N, et al. Novel process windows for enabling, accelerating, and uplifting flow chemistry[J]. ChemSusChem, 2013, 6(5): 746-789. |
2 | Kockmann N, Gottsponer M, Zimmermann B, et al. Enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production[J]. Chemistry - A European Journal, 2008, 14(25): 7470-7477. |
3 | Andrews I, Cui J, DaSilva J, et al. Green chemistry articles of interest to the pharmaceutical industry[J]. Organic Process Research & Development, 2009, 13(3): 397-408. |
4 | Mason B P, Price K E, Steinbacher J L, et al. Greener approaches to organic synthesis using microreactor technology[J]. Chemical Reviews, 2007, 107(6): 2300-2318. |
5 | Roberge D M, Zimmermann B, Rainone F, et al. Microreactor technology and continuous processes in the fine chemical and pharmaceutical industry: is the revolution underway?[J]. Organic Process Research & Development, 2008, 12(5): 905-910. |
6 | Chen M, Buchwald S L. Continuous-flow synthesis of 1- substituted benzotriazoles from chloronitrobenzenes and amines in a C-N bond formation/hydrogenation/diazotization/cyclization sequence[J]. Angewandte Chemie International Edition, 2013, 52(15): 4247-4250. |
7 | Linares N, Hartmann S, Galarneau A, et al. Continuous partial hydrogenation reactions by Pd@unconventional bimodal porous titania monolith catalysts[J]. ACS Catalysis, 2012, 2(10): 2194-2198. |
8 | Hitzler M G, Smail F R, Ross S K, et al. Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process[J]. Organic Process Research & Development, 1998, 2(3): 137-146. |
9 | Nieuwelink A E, Vollenbroek J C, Ferreira de Abreu A C, et al. Single catalyst particle diagnostics in a microreactor for performing multiphase hydrogenation reactions[J]. Faraday Discussions, 2021, 229(1): 267-280. |
10 | Guo S, Zhu G, Zhan L, et al. Continuous kilogram-scale process for the synthesis strategy of 1,3,5-trimethyl-2-nitrobenzene in microreactor[J]. Chemical Engineering Research and Design, 2022, 178(1): 179-188. |
11 | Guo S, Zhan L, Zhu G, et al. Scale-up and development of synthesis 2-ethylhexyl nitrate in microreactor using the box-behnken design[J]. Organic Process Research & Development, 2022, 26(1): 174-182. |
12 | Hofmann A W. Ueber die einwirkung des broms in alkalischer lösung auf die amine[J]. Berichte der deutschen chemischen Gesellschaft, 1881, 14(2): 2725-2736. |
13 | Evans D A, Scheidt K A, Downey C W. Synthesis of ( - ) -epibatidine[J]. Organic Letters, 2001, 3(19): 3009-3012. |
14 | Wang Y, Liu X, Deng L. Dual-function cinchona alkaloid catalysis: catalytic asymmetric tandem conjugate addition-protonation for the direct creation of nonadjacent stereocenters[J]. Journal of the American Chemical Society, 2006, 128(12): 3928-3930. |
15 | Martinková M, Gonda J, Džoganová M. A new stereocontrolled approach to a key intermediate in the synthesis of (2S,3R)-capreomycidine[J]. Collection of Czechoslovak Chemical Communications, 2006, 71(8): 1199-1210. |
16 | Dai Y, Pang H, Huang J, et al. Tailoring of ammonia reduced graphene oxide into amine functionalized graphene quantum dots through a Hofmann rearrangement[J]. RSC Advances, 2016, 6(41): 34514-34520. |
17 | Wang Z, Pelton R. Aminated thermoresponsive microgels prepared from the Hofmann rearrangement of amides without side reactions[J]. Langmuir, 2014, 30(23): 6763-6767. |
18 | Zhuang D, Gatera T, An Z, et al. Iron-catalyzed ring expansion of cyclobutanols for the synthesis of 1-pyrrolines by using MsONH3OTf[J]. Organic Letters, 2022, 24(2): 771-775. |
19 | Schäfer G, Fleischer T, Blumer N, et al. Initial route scouting and final process development for the multi-kg production of 3-fluoro-6-methoxyquinoline from p-anisidine and 2-fluoromalonic acid[J]. Organic Process Research & Development, 2022, 26(2): 347-357. |
20 | Huang J, Geng Y, Wang Y, et al. Efficient production of cyclopropylamine by a continuous-flow microreaction system[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16389-16394. |
21 | Huang J P, Sang F N, Luo G S, et al. Continuous synthesis of Gabapentin with a microreaction system[J]. Chemical Engineering Science, 2017, 173: 507-513. |
22 | Gambacorta G, Baxendale I R. Continuous-flow Hofmann rearrangement using trichloroisocyanuric acid for the preparation of 2-benzoxazolinone[J]. Organic Process Research & Development, 2022, 26(2): 422-430. |
23 | Hu L, Yan Z, Mo X, et al. Morphology control synthesis of ZIF-8 as highly efficient catalyst for the cycloaddition of CO2 to cyclic carbonate[J]. ChemCatChem, 2019, 11(14): 3212-3219. |
24 | Xu B, Wang P, Lv M, et al. Transformation of carbon dioxide into oxazolidinones and cyclic carbonates catalyzed by rare-earth-metal phenolates[J]. ChemCatChem, 2016, 8(15): 2466-2471. |
25 | Ménard G, Stephan D W. Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane[J]. Journal of the American Chemical Society, 2010, 132(6): 1796-1797. |
26 | North M, Pasquale R. Mechanism of cyclic carbonate synthesis from epoxides and CO2 [J]. Angewandte Chemie International Edition, 2009, 48(16): 2946-2948. |
27 | Xu B H, Wang J Q, Sun J, et al. Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach[J]. Green Chemistry, 2015, 17(1): 108-122. |
28 | Liu D, Li G, Liu H. Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition[J]. Applied Surface Science, 2018, 428: 218-225. |
29 | Chu C, Zhang F, Zhu C, et al. Mass transfer characteristics of CO2 absorption into 1-butyl-3-methylimidazolium tetrafluoroborate aqueous solution in microchannel[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1064-1071. |
30 | Long W, Song Z, Ren T, et al. Analysis of heat transfer enhancement in a micro-scale heat sink structure[J]. Journal of Thermal Science and Engineering Applications, 2022, 14(1): 011006. |
31 | Liu J, Yang G, Liu Y, et al. Efficient conversion of CO2 into cyclic carbonates at room temperature catalyzed by Al-salen and imidazolium hydrogen carbonate ionic liquids[J]. Green Chemistry, 2020, 22(14): 4509-4515. |
32 | Wu Y, Ding Y, Xu J, et al. Efficient fixation of CO2 into propylene carbonate with [BMIM]Br in a continuous-flow microreaction system[J]. Green Energy & Environment, 2021, 6(2): 291-297. |
33 | Peng J, Wang S, Yang H J, et al. Highly efficient fixation of carbon dioxide to cyclic carbonates with new multi-hydroxyl bis-(quaternary ammonium) ionic liquids as metal-free catalysts under mild conditions[J]. Fuel, 2018, 224: 481-488. |
34 | Wu Y, Chen A, Liu X, et al. Kinetic study of highly efficient CO2 fixation into propylene carbonate using a continuous-flow reactor[J]. Chemical Engineering and Processing - Process Intensification, 2021, 159: 108235. |
35 | Li X, Liu X, Liu J, et al. The efficient catalytic microsystem with halogen-free catalyst for the intensification on CO2 cycloaddition[J]. Applied Catalysis B: Environmental, 2021, 283: 119629. |
36 | Tengfeng X, Dejun W, Lianjie Z, et al. Application of surface photovoltage technique to the determination of conduction types of azo pigment films[J]. The Journal of Physical Chemistry B, 2000, 104(34): 8177-8181. |
37 | Lomax S Q, Learner T. A review of the classes, structures, and methods of analysis of synthetic organic pigments[J]. Journal of the American Institute for Conservation, 2006, 45(2): 107-125. |
38 | Ishida R, Obara S, Masubuchi Y, et al. Induction of propranolol metabolism by the azo dye sudan III in rats[J]. Biochemical Pharmacology, 1992, 43(11): 2489-2492. |
39 | Sharma P, Rane N, Gurram V K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents[J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14(16): 4185-4190. |
40 | Guerra E, Llompart M, Garcia-Jares C. Analysis of dyes in cosmetics: challenges and recent developments[J]. Cosmetics, 2018, 5(3): 47. |
41 | Feng G, Zhu M, Liu L, et al. A quantitative one-pot synthesis method for industrial azo pigments with recyclable wastewater[J]. Green Chemistry, 2019, 21(7): 1769-1776. |
42 | Yu Z, Ye X, Xu Q, et al. A fully continuous-flow process for the synthesis of p -cresol: impurity analysis and process optimization[J]. Organic Process Research & Development, 2017, 21(10): 1644-1652. |
43 | D'Attoma J, Camara T, Brun P L, et al. Efficient transposition of the sandmeyer reaction from batch to continuous process[J]. Organic Process Research & Development, 2017, 21(1): 44-51. |
44 | Yu Z, Lv Y, Yu C, et al. Continuous flow reactor for Balz-Schiemann reaction: a new procedure for the preparation of aromatic fluorides[J]. Tetrahedron Letters, 2013, 54(10): 1261-1263. |
45 | Malet-Sanz L, Madrzak J, Holvey R S, et al. A safe and reliable procedure for the iododeamination of aromatic and heteroaromatic amines in a continuous flow reactor[J]. Tetrahedron Letters, 2009, 50(52): 7263-7267. |
46 | Aysha T, Zain M, Arief M, et al. Alkali-stable solid state fluorescent pyrazolo/pyrrolinone disperse dyes: synthesis and application for dyeing polyester fabric[J]. Journal of Molecular Structure, 2022, 1249: 131623. |
47 | Moorthy S, Castillo Bonillo A, Lambert H, et al. Modulating the reaction pathway of phenyl diazonium ions using host-guest complexation with cucurbit[7]uril[J]. Chemical Communications, 2022, 58(22): 3617-3620. |
48 | Shukla C A, Kulkarni A A, Ranade V V. Selectivity engineering of the diazotization reaction in a continuous flow reactor[J]. Reaction Chemistry & Engineering, 2016, 1(4): 387-396. |
49 | Wang F, Huang J, Xu J. Continuous-flow synthesis of azo dyes in a microreactor system[J]. Chemical Engineering and Processing - Process Intensification, 2018, 127: 43-49. |
50 | Pennemann H, Forster S, Kinkel J, et al. Improvement of dye properties of the azo pigment yellow 12 using a micromixer-based process[J]. Organic Process Research & Development, 2005, 9(2): 188-192. |
51 | Wille C, Gabski H P, Haller T, et al. Synthesis of pigments in a three-stage microreactor pilot plant—an experimental technical report[J]. Chemical Engineering Journal, 2004, 101(1/2/3): 179-185. |
52 | Wang F J, Ding Y C, Xu J H. Continuous-flow synthesis of pigment red 146 in a microreactor system[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16338-16347. |
53 | Greenway G M, Haswell S J, Morgan D O, et al. The use of a novel microreactor for high throughput continuous flow organic synthesis[J]. Sensors and Actuators B: Chemical, 2000, 63(3): 153-158. |
54 | Wang F J, Huang J P, Xu J H. Continuous-flow synthesis of the azo pigment yellow 14 using a three-stream micromixing process[J]. Organic Process Research & Development, 2019, 23(12): 2637-2646. |
55 | Jiang X, Li G, Liu S, et al. Synthesis of arenediazonium salts and Suzuki-Miyaura cross-coupling reaction in microreactors[J]. Journal of Flow Chemistry, 2021, 11(4): 843-853. |
56 | Wang F J, Chen A, Ling S, et al. Continuous-flow diazotization of red base KD hydrochloride suspensions in a microreaction system[J]. Reaction Chemistry & Engineering, 2021, 6(8): 1462-1474. |
57 | Hessell E T, Abramshe R A. Alkylated naphthalenes as high-performance synthetic fluids[J]. Journal of Synthetic Lubrication, 2003, 20(2): 109-122. |
58 | Li L, Zhao X, Chen C, et al. Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil[J]. ChemistrySelect, 2019, 4(18): 5284-5290. |
59 | Wang J, Park J N, Park Y K, et al. Isopropylation of naphthalene by isopropyl alcohol over USY catalyst: an investigation in the high-pressure fixed-bed flow reactor[J]. Journal of Catalysis, 2003, 220(2): 265-272. |
60 | Aliyeva R V, Babashova Y M, Khamiyev M J, et al. The alkylation of oil fractions rich in aromatic hydrocarbons with C6, C8 and C10 α- olefins in the presence of ionic liquids catalytic systems[J]. Applied Petrochemical Research, 2021, 11(1): 65-77. |
61 | Blanco C G, Banciella D C, Azpíroz M D G. Alkylation of naphthalene using three different ionic liquids[J]. Journal of Molecular Catalysis A: Chemical, 2006, 253(1/2): 203-206. |
62 | Li L, Zhang J, Du C, et al. Kinetics study of sulfuric acid alkylation of isobutane and butene using a microstructured chemical system[J]. Industrial & Engineering Chemistry Research, 2019, 58(3): 1150-1158. |
63 | Li L, Zhang J, Du C, et al. Intensification of the sulfuric acid alkylation process with trifluoroacetic acid[J]. AIChE Journal, 2019, 65(1): 113-119. |
64 | Zheng W, Xie W, Sun W, et al. Modeling of the interfacial behaviors for the isobutane alkylation with C4 olefin using ionic liquid as catalyst[J]. Chemical Engineering Science, 2017, 166: 42-52. |
65 | Zhang H, Liu R, Yang Z, et al. Alkylation of isobutane/butene promoted by fluoride-containing ionic liquids[J]. Fuel, 2018, 211: 233-240. |
66 | Yang T, Wang F, Huang J, et al. Efficient continuous-flow synthesis of long-chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system[J]. Reaction Chemistry & Engineering, 2021, 6(10): 1950-1960. |
67 | Wang D, Zhang T, Yang Y, et al. Intensification of isobutane/1-butene alkylation process in a micromixing microreactor catalyzed by ILs/H2SO4 [J]. Chemical Engineering and Processing - Process Intensification, 2022, 174: 108865. |
68 | Cui P, Zhao G, Ren H, et al. Ionic liquid enhanced alkylation of iso-butane and 1-butene[J]. Catalysis Today, 2013, 200: 30-35. |
69 | Janardanan S, Papadaki M I, Waldram S P, et al. Toward an inherently safer alternative for operating N-oxidation of alkylpyridines: effect of N-oxide on lutidine-water phase separation[J]. Thermochimica Acta, 2017, 656: 38-46. |
70 | Lisicki D, Nowak K, Orlińska B. Methods to produce nicotinic acid with potential industrial applications[J]. Materials, 2022, 15(3): 765. |
71 | Mezyk L, Gut Z, Mohan K, et al. Initial research on thermal decomposition of 98% concentrated hydrogen peroxide in thruster-like conditions[J]. Engineering Science and Technology, an International Journal, 2022, 31: 101054. |
72 | Sang F, Huang J, Xu J. A circular microreaction method to the safe and efficient synthesis of 3-methylpyridine-N-oxide[J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1320-1325. |
73 | Ley S V, Chen Y, Fitzpatrick D E, et al. A new world for chemical synthesis?[J]. CHIMIA, 2019, 73(10): 792. |
74 | Hamano M, Nagy K D, Jensen K F. Continuous flow metal-free oxidation of picolines using air[J]. Chemical Communications, 2012, 48(15): 2086. |
75 | Manikandan R, Anitha P, Prakash G, et al. Ruthenium(Ⅱ) carbonyl complexes containing pyridoxal thiosemicarbazone and trans-bis(triphenylphosphine/arsine): synthesis, structure and their recyclable catalysis of nitriles to amides and synthesis of imidazolines[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 312-324. |
[1] | 付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783. |
[2] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
[3] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[4] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[5] | 顾仁杰, 张加威, 靳雪阳, 文利雄. 微撞击流反应器制备镍钴复合氢氧化物超级电容器材料及其性能研究[J]. 化工学报, 2022, 73(8): 3749-3757. |
[6] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
[7] | 许非石, 杨丽霞, 陈光文. 超声微反应器内气液传质过程的介尺度强化机制[J]. 化工学报, 2022, 73(6): 2552-2562. |
[8] | 王宜飞, 王清强, 姬德生, 李申芳, 金楠, 赵玉潮. 微通道壁面浸润性对气-液两相流的影响规律研究[J]. 化工学报, 2022, 73(4): 1501-1514. |
[9] | 徐一鸣, 袁华, 刘素丽, 李平, 严佩蓉, 赵曦, 卢俊华, 赵唯, 张学兰. 微通道反应器中工业混合直链烷基苯磺酸盐的连续合成工艺研究[J]. 化工学报, 2022, 73(3): 1184-1193. |
[10] | 向亮, 钟子豪, 苏远海. 微反应器内连续制备拓扑结构聚合物的研究进展[J]. 化工学报, 2022, 73(12): 5275-5288. |
[11] | 方凯伦, 陈帅帅, 付家崴, 蒋新. 微反应器研究陈化过程对铜锰催化剂的影响[J]. 化工学报, 2022, 73(10): 4438-4447. |
[12] | 马永丽, 刘明言, 李琛, 胡宗定. 液固和气液固微型流态化研究进展[J]. 化工学报, 2022, 73(1): 46-58. |
[13] | 谢钦崟, 黄晓连, 李元, 李玲, 葛雪惠, 邱挺. TiO2平板微反应器设计优化及光催化性能研究[J]. 化工学报, 2021, 72(7): 3626-3636. |
[14] | 董晓锐, 王凯, 骆广生. 金纳米颗粒的微反应连续合成[J]. 化工学报, 2021, 72(7): 3823-3831. |
[15] | 李婧怡, 匡卓贤. 对项目整个生命周期PHSER方法的探究与借鉴[J]. 化工学报, 2021, 72(3): 1634-1642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||