化工学报 ›› 2025, Vol. 76 ›› Issue (1): 151-160.DOI: 10.11949/0438-1157.20240677
收稿日期:
2024-06-17
修回日期:
2024-08-18
出版日期:
2025-01-25
发布日期:
2025-02-08
通讯作者:
韩志敏
作者简介:
韩志敏(1988—),男,博士,副教授,hanzm@neepu.edu.cn
基金资助:
Zhimin HAN(), Xiangyu ZHOU, Hongyu ZHANG, Zhiming XU
Received:
2024-06-17
Revised:
2024-08-18
Online:
2025-01-25
Published:
2025-02-08
Contact:
Zhimin HAN
摘要:
由于换热器实际的热交换过程中换热壁面并非绝对光滑,而粗糙换热壁面很容易在部分局部位置处结垢,因此基于已构建的局部析晶污垢模型,对不同粗糙元结构下CaCO3污垢局部沉积特性进行数值模拟研究。对比了三种不同形状(矩形、梯形和三角形)的粗糙元,并详细分析了三角形粗糙元的相对高度和相对宽度的影响。结果表明,三种粗糙元通道内的局部污垢热阻平均值均小于光滑通道,其中三角形粗糙元的局部污垢热阻平均值最小。三种粗糙元通道局部污垢热阻沿通道长度增加均呈周期性变化,且在每个周期内均存在峰值,其中最大峰值位于粗糙元背风侧。此外,局部污垢热阻随着三角形粗糙元相对高度的增加而减小,随着相对宽度的增加而略有增加,说明相对高度对局部污垢沉积影响更大。
中图分类号:
韩志敏, 周相宇, 张宏宇, 徐志明. 不同粗糙元结构下CaCO3污垢局部沉积特性[J]. 化工学报, 2025, 76(1): 151-160.
Zhimin HAN, Xiangyu ZHOU, Hongyu ZHANG, Zhiming XU. Local deposition characteristics of CaCO3 fouling under different roughness element structures[J]. CIESC Journal, 2025, 76(1): 151-160.
结构 | 相对高度e/H | 相对宽度p/L |
---|---|---|
1 | 0.05 | 0.0025 |
2 | 0.15 | 0.0075 |
3 | 0.25 | 0.0125 |
4 | 0.35 | 0.0175 |
5 | 0.45 | 0.0225 |
表1 粗糙元结构参数
Table 1 Structural parameters of roughness element
结构 | 相对高度e/H | 相对宽度p/L |
---|---|---|
1 | 0.05 | 0.0025 |
2 | 0.15 | 0.0075 |
3 | 0.25 | 0.0125 |
4 | 0.35 | 0.0175 |
5 | 0.45 | 0.0225 |
1 | Liang Y D, Xu Y, Jia M, et al. Experimental study on the influence of an alternating magnetic field on the CaCO3 fouling of a heat transfer surface[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122156. |
2 | 张亮, 张安龙, 荆宇燕, 等. 波壁管中脉动流动的数值模拟[J]. 东北电力大学学报, 2021, 41(6): 11-16. |
Zhang L, Zhang A L, Jing Y Y, et al. Numerical simulation of pulsating flow in wave wall tube[J]. Journal of Northeast Electric Power University, 2021, 41(6): 11-16. | |
3 | 王兵兵, 王超, 徐志明. 圆筒电极抑制换热表面CaCO3污垢沉积特性研究[J]. 化工学报, 2022, 73(2): 634-642. |
Wang B B, Wang C, Xu Z M. Characteristics of CaCO3 fouling deposition on heat exchange surface under the action of cylinder electrode[J]. CIESC Journal, 2022, 73(2): 634-642. | |
4 | Darand J, Jafarian A. Long-term simulation of crystallization fouling in a forced circulation crystallizer[J]. International Journal of Heat and Mass Transfer, 2024, 231: 125845. |
5 | Kern D Q, Seaton R E. A theoretical analysis of thermal surface fouling[J]. British Chemical Engineering, 1959, 4(5): 258-262. |
6 | Bohnet M. Fouling of heat transfer surfaces[J]. Chemical Engineering & Technology, 1987, 10(1): 113-125. |
7 | 刘中良, 施明恒, 戴锅生. 结晶垢结垢过程的传热传质模型[J]. 化工学报, 1997, 48(4): 401-407. |
Liu Z L, Shi M H, Dai G S. A heat mass transfer model of scaling process[J]. Journal of Chemical Industry and Engineering (China), 1997, 48(4): 401-407. | |
8 | 徐志明, 张进朝. CaSO4析晶污垢形成过程的数值模拟[J]. 东北电力大学学报(自然科学版), 2008, 28(1): 8-11. |
Xu Z M, Zhang J C. Numerical simulation of the CaSO4 crystallization fouling process[J]. Journal of Northeast Dianli University (Natural Science Edition), 2008, 28(1): 8-11. | |
9 | 杨大章, 柳建华, 鄂晓雪, 等. 海水冷却水析晶污垢分析及其生长模型[J]. 化工进展, 2015, 34(8): 3179-3182. |
Yang D Z, Liu J H, E X X, et al. Composition analysis and kinetic modeling of crystallization fouling in cooling seawater[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3179-3182. | |
10 | Pääkkönen T M, Ojaniemi U, Pättikangas T, et al. CFD modelling of CaCO3 crystallization fouling on heat transfer surfaces[J]. International Journal of Heat and Mass Transfer, 2016, 97: 618-630. |
11 | Zhang F, Xiao J, Chen X D. Towards predictive modeling of crystallization fouling: a pseudo-dynamic approach[J]. Food and Bioproducts Processing, 2015, 93: 188-196. |
12 | Babuška I, Silva R S, Actor J. Break-off model for CaCO3 fouling in heat exchangers[J]. International Journal of Heat and Mass Transfer, 2018, 116: 104-114. |
13 | Xiong C L, Chen Y C, Ma C F. Prediction model of crystallization fouling of calcium carbonate in circulating cooling water[J]. International Journal of Thermal Sciences, 2023, 183: 107829. |
14 | Hissanaga A M, Barbosa J R, da Silva A K. Numerical analysis of inorganic fouling with multi-physics turbulent models[J]. Applied Thermal Engineering, 2023, 220: 119624. |
15 | Duan Z D, Cheng C, Tang W Y. A mathematical model for predicting crystallization fouling in narrow rectangle channel incorporating crystal growth effect[J]. Energy, 2024, 291: 130399. |
16 | Kim H S, Kim J, Sohn S, et al. Experimental and numerical investigation on the fouling of a river water source heat pump system[J]. Applied Thermal Engineering, 2024, 245: 122784. |
17 | Awad M M. Fouling of Heat Transfer Surfaces[M]. London: Intech Open Access Publisher, 2011. |
18 | 闻劭意, 彭晓峰, 吴海玲, 等. 粗糙表面不同粗糙元间局部流动与传热特性[J]. 化工学报, 2005, 56(3): 408-411. |
Wen S Y, Peng X F, Wu H L, et al. Local flow and heat transfer characteristics among roughness ribs in rectangular channel[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(3): 408-411. | |
19 | 王爱国, 冯妍卉, 林林, 等. 三角形粗糙元的微通道内流动换热的模拟分析[J]. 热科学与技术, 2008, 7(1): 11-16. |
Wang A G, Feng Y H, Lin L, et al. Simulation of flow and heat transfer in micro-channels with triangular rough cells[J]. Journal of Thermal Science and Technology, 2008, 7(1): 11-16. | |
20 | Ansari M Q, Zhou G B. Flow and heat transfer analysis of microchannels structured with rectangular surface roughness[J]. Chemical Engineering and Processing-Process Intensification, 2020, 156: 108066. |
21 | Nghana B, Tariku F, Bitsuamlak G. Numerical assessment of the impact of transverse roughness ribs on the turbulent natural convection in a BIPV air channel[J]. Building and Environment, 2022, 217: 109093. |
22 | Zheng S F, Liu G Q, Zhang Y, et al. Performance evaluation with turbulent flow and heat transfer characteristics in rectangular cooling channels with various novel hierarchical rib schemes[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124459. |
23 | Prasad J S, Datta A, Mondal S. Numerical analysis of a solar air heater with offset transverse ribs placed near the absorber plate[J]. Renewable Energy, 2024, 227: 120608. |
24 | Lu H, Lu L. Effects of rib spacing and height on particle deposition in ribbed duct air flows[J]. Building and Environment, 2015, 92: 317-327. |
25 | Li W, Fu P, Li H X, et al. Numerical-theoretical analysis of heat transfer, pressure drop, and fouling in internal helically ribbed tubes of different geometries[J]. Heat Transfer Engineering, 2016, 37(3/4): 279-289. |
26 | Luo K, Dai Q, Liu X F, et al. Effects of wall roughness on particle dynamics in a spatially developing turbulent boundary layer[J]. International Journal of Multiphase Flow, 2019, 111: 140-157. |
27 | Hong W P, Wang B H, Zheng J X. Numerical study on the influence of fine particle deposition characteristics on wall roughness[J]. Powder Technology, 2020, 360: 120-128. |
28 | Xu Z M, Fan H B, Han Z M. The comparison between integral and local calculation methods on the simulation of crystallization fouling[J]. International Journal of Thermal Sciences, 2022, 171: 107252. |
29 | Pääkkönen T M, Riihimäki M, Simonson C J, et al. Modeling CaCO3 crystallization fouling on a heat exchanger surface—definition of fouling layer properties and model parameters[J]. International Journal of Heat and Mass Transfer, 2015, 83: 84-98. |
30 | Epstein N. A model of the initial chemical reaction fouling rate for flow within a heated tube, and its verification[C]//Proceeding of International Heat Transfer Conference 10. Connecticut: Begellhouse, 1994: 225-229. |
31 | Han Z M, Fan H B, Wang C, et al. CaCO3 local fouling characteristics on the rectangular channel with finned vortex generators[J]. International Communications in Heat and Mass Transfer, 2021, 129: 105662. |
32 | Teng K H, Kazi S N, Amiri A, et al. Calcium carbonate fouling on double-pipe heat exchanger with different heat exchanging surfaces[J]. Powder Technology, 2017, 315: 216-226. |
[1] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
[2] | 冯海军, 章冰璇, 周健. 图神经网络模型预测和解释离子液体毒性的研究[J]. 化工学报, 2025, 76(1): 93-106. |
[3] | 王瀚彬, 胡帅, 毕丰雷, 李隽森, 贺来宾. 新型波纹翅片金属氢化物反应器的放氢性能有限元分析[J]. 化工学报, 2025, 76(1): 221-230. |
[4] | 高羡明, 杨汶轩, 卢少辉, 任晓松, 卢方财. 双槽道结构对超疏水表面液滴合并弹跳的影响[J]. 化工学报, 2025, 76(1): 208-220. |
[5] | 贾艳萍, 马艳菊, 管文昕, 杨彬, 张健, 张兰河. 响应面法优化Fe0/H2O2体系降解染料废水的工艺条件及机理[J]. 化工学报, 2025, 76(1): 348-362. |
[6] | 韩启沃, 刘永峰, 裴普成, 张璐, 姚圣卓. 工作温度对PEMFC水分布、质子传输及性能影响分析[J]. 化工学报, 2025, 76(1): 374-384. |
[7] | 唐元晖, 柏元吉, 郭强, 何晓磊, 余立新, 林亚凯, 王晓琳. 高矿化度矿井水热法脱盐过程中硫酸钙的结垢趋势预测及验证[J]. 化工学报, 2025, 76(1): 81-92. |
[8] | 邓志诚, 杨欢, 王斯民, 王家瑞. 微混燃烧器中微管结构对氢燃料掺混效果与燃烧性能影响[J]. 化工学报, 2025, 76(1): 335-347. |
[9] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[10] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[11] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[12] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[13] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[14] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[15] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
阅读次数 | ||||||||||||||||||||||
全文 420
|
|
|||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||