化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1841-1851.DOI: 10.11949/0438-1157.20240693
蔡天姿1(), 张海丰1, 林海丹2, 张子龙1, 周鹏宇1, 王柏林1(
), 李小年3(
)
收稿日期:
2024-06-21
修回日期:
2024-10-24
出版日期:
2025-04-25
发布日期:
2025-05-12
通讯作者:
王柏林,李小年
作者简介:
蔡天姿(1999—),女,硕士研究生,czltz2584@163.com
基金资助:
Tianzi CAI1(), Haifeng ZHANG1, Haidan LIN2, Zilong ZHANG1, Pengyu ZHOU1, Bolin WANG1(
), Xiaonian LI3(
)
Received:
2024-06-21
Revised:
2024-10-24
Online:
2025-04-25
Published:
2025-05-12
Contact:
Bolin WANG, Xiaonian LI
摘要:
一氧化碳(CO)和二氧化碳(CO2)是检测变压器故障的重要特征气体,其组分可以有效反映变压器的运行状态。为实现特征气体的快速精准检测,提出了一种利用新型材料硼(B)掺杂氮(N)基石墨烯检测变压器油中溶解特征气体CO和CO2的方法。结合密度泛函理论(DFT)探究了CO、CO2气体在B掺杂石墨氮(graphitic-N)、吡啶氮(pyridinic-N)和吡咯氮(pyrrolic-N)石墨烯基底上的吸附和活化行为。从理论上探讨B掺杂氮基石墨烯(BN-X/G)在特征气体吸附后的几何结构、电荷密度、电子态密度以及能带结构的变化。结果显示,CO、CO2在B掺杂graphitic-N基石墨烯上的吸附能分别为-0.18和-0.20 eV,与其他掺杂基底具有显著的性能差异,表现出更强的吸附性能。电子局域函数(ELF)构型及Bader电荷结果显示,CO和CO2分别向BN-G/G基底输出0.013 e和0.009 e的电荷转移,加强了特征气体与基底之间的相互作用。态密度(DOS)结果表明,B掺杂提高了N-G/G的p带中心,B与graphitic-N原子之间有明显的轨道杂化现象并形成共价键,促进吸附性能的增强。本研究可为变压器油中溶解性特征气体在杂原子掺杂石墨烯材料的吸附机理及气体传感器的理性设计提供参考。
中图分类号:
蔡天姿, 张海丰, 林海丹, 张子龙, 周鹏宇, 王柏林, 李小年. 硼掺杂氮基石墨烯检测变压器油中溶解气体CO和CO2的密度泛函理论研究[J]. 化工学报, 2025, 76(4): 1841-1851.
Tianzi CAI, Haifeng ZHANG, Haidan LIN, Zilong ZHANG, Pengyu ZHOU, Bolin WANG, Xiaonian LI. A density functional theory study on the sensing of dissolved gases CO and CO2 in transformer oil using boron-doped nitrogen-based graphene[J]. CIESC Journal, 2025, 76(4): 1841-1851.
图2 杂原子掺杂石墨烯纳米带构型(紫色:C;黄色:N;绿色:B;白色:H)
Fig.2 Schematic diagram of heteroatom-doped graphene nanoribbon configurations (purple: C; yellow: N; green: B; white: H)
图3 各掺杂石墨烯纳米带体系吸附CO、CO2气体最佳构型及其吸附能(紫色:C;黄色:N;绿色:B;红色:O;白色:H)
Fig.3 Optimal configuration diagrams and adsorption energies of CO and CO2 gases on various heteroatom-doped graphene nanoribbon systems (purple: C; yellow: N; green: B; red: O; white: H)
Structure | Bond length/Å | D/Å | ||||
---|---|---|---|---|---|---|
C—C | B—C | B—N | N—C | CO | CO2 | |
G | 1.421 | |||||
N-G/G | 1.429 | 1.406 | 3.229(O—N) | 3.102(O—N) | ||
BN-G/G | 1.428 | 1.498 | 1.441 | 1.410 | 3.447(O—B) | 3.672(O—B) |
N-P/G | 1.445 | 1.364 | 3.695(O—N) | 3.621(O—N) | ||
BN-P/G | 1.464 | 1.538 | 1.416 | 1.346 | 3.767(O—B) | 3.632(O—B) |
N-O/G | 1.436 | 1.398 | 3.677(O—N) | 3.766(O—N) | ||
BN-O/G | 1.446 | 1.476 | 1.357 | 1.402 | 3.440(O—B) | 3.475(O—B) |
表1 各掺杂石墨烯纳米带体系的键长及吸附CO、CO2气体到石墨烯表面的距离
Table 1 Bond lengths and distances of CO and CO2 gases adsorbed onto the surface of various heteroatom-doped graphene nanoribbon systems
Structure | Bond length/Å | D/Å | ||||
---|---|---|---|---|---|---|
C—C | B—C | B—N | N—C | CO | CO2 | |
G | 1.421 | |||||
N-G/G | 1.429 | 1.406 | 3.229(O—N) | 3.102(O—N) | ||
BN-G/G | 1.428 | 1.498 | 1.441 | 1.410 | 3.447(O—B) | 3.672(O—B) |
N-P/G | 1.445 | 1.364 | 3.695(O—N) | 3.621(O—N) | ||
BN-P/G | 1.464 | 1.538 | 1.416 | 1.346 | 3.767(O—B) | 3.632(O—B) |
N-O/G | 1.436 | 1.398 | 3.677(O—N) | 3.766(O—N) | ||
BN-O/G | 1.446 | 1.476 | 1.357 | 1.402 | 3.440(O—B) | 3.475(O—B) |
Structure | Transfer electron/e | ||||||
---|---|---|---|---|---|---|---|
N | B | C | O1 | O2 | CO | CO2 | |
CO/BN-G/G | -1.498 | +1.885 | +1.059 | -1.072 | -0.013 | ||
CO/BN-O/G | -1.467 | +1.913 | +1.073 | -1.085 | -0.012 | ||
CO2/BN-G/G | -1.490 | +1.881 | +2.076 | -1.060 | -1.023 | -0.009 | |
CO2/BN-O/G | -1.480 | +1.948 | +2.087 | -1.050 | -1.047 | -0.008 |
表2 BN-G/G、BN-O/G吸附 CO、CO2后的电荷转移量
Table 2 Charge transfer quantities for CO and CO2 adsorption on BN-G/G and BN-O/G
Structure | Transfer electron/e | ||||||
---|---|---|---|---|---|---|---|
N | B | C | O1 | O2 | CO | CO2 | |
CO/BN-G/G | -1.498 | +1.885 | +1.059 | -1.072 | -0.013 | ||
CO/BN-O/G | -1.467 | +1.913 | +1.073 | -1.085 | -0.012 | ||
CO2/BN-G/G | -1.490 | +1.881 | +2.076 | -1.060 | -1.023 | -0.009 | |
CO2/BN-O/G | -1.480 | +1.948 | +2.087 | -1.050 | -1.047 | -0.008 |
1 | Ni J M, Yang B Q, Jia F F, et al. Theoretical investigation of the sensing mechanism of the pure graphene and Al,B,N,P doped mono-vacancy graphene-based methane[J]. Chemical Physics Letters, 2018, 710: 221-225. |
2 | Skorupska M, Ilnicka A, Lukaszewicz J P. Modified graphene foam as a high-performance catalyst for oxygen reduction reaction[J]. RSC Advances, 2023, 13(36): 25437-25442. |
3 | Gui Y G, Xu L N, Ding Z Y, et al. Co, Rh decorated GaNNTs for online monitoring of characteristic decomposition products in oil-immersed transformer[J]. Applied Surface Science, 2021, 561: 150072. |
4 | Zhang J, Wang Y Q, Wei Z, et al. Ni-decorated ZnO monolayer for sensing CO and HCHO in dry-type transformers: a first-principles theory[J]. Chemosensors, 2022, 10(8): 307. |
5 | Yuan T, Fu C, Gong Y J, et al. First-principles insights into Cu-decorated GaN monolayers for sensing CO and HCHO in dry-type transformers[J].ACS Omega, 2021, 6(29): 19127-19133. |
6 | Simões A N, Lustosa G M M M, de Souza Morita E, et al. Room-temperature SnO2-based sensor with Pd-nanoparticles for real-time detection of CO dissolved gas in transformer oil[J]. Materials Chemistry and Physics, 2024, 311: 128576. |
7 | Li Z, Zhang Q R, Wang Z T, et al. A highly sensitive low-pressure TDLAS sensor for detecting dissolved CO and CO2 in transformer insulating oil[J]. Optics & Laser Technology, 2024, 174: 110622. |
8 | Zeng Q L, Wang L H, Zhu H, et al. Estimating daily concentrations of near-surface CO, NO2, and O3 simultaneously over China based on spatiotemporal multi-task transformer model[J]. Atmospheric Environment, 2024, 316: 120193. |
9 | Gui Y G, Liu Z C, Ji C, et al. Adsorption behavior of metal oxides (CuO, NiO, Ag2O) modified GeSe monolayer towards dissolved gases (CO, CH4, C2H2, C2H4) in transformer oil[J]. Journal of Industrial and Engineering Chemistry, 2022, 112: 134-145. |
10 | Wang H M, Wu H L, Cui H. First-principles screening in Cu-embedded PtSe2 monolayer as a potential gas sensor upon CO and HCHO in dry-type transformers[J]. Computational and Theoretical Chemistry, 2022, 1209: 113586. |
11 | Cui H, Jia P F, Peng X Y, et al. Adsorption and sensing of CO and C2H2 by S-defected SnS2 monolayer for DGA in transformer oil: a DFT study[J]. Materials Chemistry and Physics, 2020, 249: 123006. |
12 | Xie R J, Lu J B, Wang J. High performance room temperature CO gas sensor based on CuO/ TiO2/N-MWCNTs ternary nanocomposites[J]. Journal of Industrial and Engineering Chemistry, 2024, 131: 248-256. |
13 | Wu H, Fang J, Yuan S, et al. Exploration on the application of copper oxide particles doped janus ZrSSe in detecting dissolved gases in oil-immersed transformers: a DFT study[J]. Materials Today Chemistry, 2024, 38: 102038. |
14 | He T, Liu H C, Zhang J, et al. DFT study on the adsorption and sensing properties of dissolved gases (H2, CO and CH4) in transformer oil on PdO-doped In2O3 (110) surfaces[J]. Chemical Physics Letters, 2023, 832: 140865. |
15 | Zhao P P, Tang M C, Zhang D Z. Adsorption of dissolved gas molecules in the transformer oil on metal (Ag, Rh, Sb)-doped PdSe2 momlayer: a first-principles study[J]. Applied Surface Science, 2022, 600: 154054. |
16 | Chen Z W, Zhang X X, Xiong H, et al. Dissolved gas analysis in transformer oil using Pt-doped WSe2 monolayer based on first principles method[J]. IEEE Access, 2019, 7: 72012-72019. |
17 | Zhang Y S, Yan S C, Zhu Y W. Gas-sensing properties of Ti, Zr, V, and Nb-modified Ti3C2O2 for decomposed gases in locomotive electric transformers: a DFT study[J]. Dalton Transactions, 2024, 53(8): 3548-3558. |
18 | Zhang B S, Zhang J Q, Huang Y, et al. Burning process and fire characteristics of transformer oil[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(3): 1839-1848. |
19 | Saeid M, Zeinoddini-Meymand H, Kamel S, et al. Interaction of transformer oil parameters on each other and on transformer health index using curve estimation regression method[J]. International Transactions on Electrical Energy Systems, 2022, 2022: 7548533. |
20 | Prasojo R A, Diwyacitta K, Suwarno, et al. Transformer paper expected life estimation using ANFIS based on oil characteristics and dissolved gases (case study: Indonesian transformers)[J]. Energies, 2017, 10(8): 1135. |
21 | Jia L F, Chen J X, Cui X S, et al. Gas sensing mechanism and adsorption properties of C2H4 and CO molecules on the Ag3-HfSe2 monolayer: a first-principle study[J]. Frontiers in Chemistry, 2022, 10: 911170. |
22 | Cui H, Chen D C, Zhang Y, et al. Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory[J]. Sustainable Materials and Technologies, 2019, 20: e0094. |
23 | Qiao H, Zhang X B, Wang P, et al. Metal oxide decorated GeTe monolayer as promising materials for dissolved gases in transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(2): 904-911. |
24 | Zeng T T, Ma D L, Gui Y G. Gas-sensitive performance study of metal (Au, Pd, Pt)/ZnO heterojunction gas sensors for dissolved gases in transformer oil[J]. Langmuir, 2024, 40(18): 9819-9830. |
25 | Xu Z L. Ni-decorated PtS2 monolayer as a strain-modulated and outstanding sensor upon dissolved gases in transformer oil: a first-principles study[J]. ACS Omega, 2023, 8(6): 6090-6098. |
26 | Zheng H B, Yang E C, Wu S Y, et al. Investigation on formation mechanisms of carbon oxides during thermal aging of cellulosic insulating paper[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(4): 1226-1233. |
27 | Zhao P P, Li T T, Zhang D Z. Adsorption of dissolved gas molecules in the transformer oil on silver-modified (002) planes of molybdenum diselenide monolayer: a DFT study[J]. Journal of Physics: Condensed Matter, 2021, 33(48): 485201. |
28 | Wang X R, Gui Y G, Ding Z Y, et al. Density functional theory study of Pd, Pt, and Au modified GeSe for adsorption and sensing of dissolved gases in transformer oil[J]. Surfaces and Interfaces, 2022, 31: 101994. |
29 | Qian G C, Hu J, Wang S, et al. Adsorption and sensing properties of dissolved gas in oil on Cr-doped InN monolayer: a density functional theory study[J]. Chemosensors, 2022, 10(1): 30. |
30 | Mu L, Chen D C, Cui H. Single Pd atom embedded Janus HfSeTe as promising sensor for dissolved gas detection in transformer oil: a density functional theory study[J]. Surfaces and Interfaces, 2022, 35: 102398. |
31 | Jung Mi H, Kwak M, Ahn J, et al. Highly sensitive and selective acetylene CuO/ZnO heterostructure sensors through electrospinning at lean O2 concentration for transformer diagnosis[J]. ACS Sensors, 2024, 9(1): 217-227. |
32 | Mann S, Mudahar I, Sharma H, et al. Lattice thermal conductivity of pure and doped (B, N) graphene[J]. Materials Research Express, 2020, 7(9): 095003. |
33 | Siburian R, Sebayang K, Supeno M, et al. Effect of N-doped graphene for properties of Pt/N-doped graphene catalyst[J]. ChemistrySelect, 2017, 2(3): 1188-1195. |
34 | 张芳芳, 韩敏, 赵娟, 等. 单空缺石墨烯负载的Pd单原子催化剂上NO还原的密度泛函理论研究[J]. 化工学报, 2021, 72(3): 1382-1391. |
Zhang F F, Han M, Zhao J, et al. DFT study on reduction of NO over Pd atom anchored on single-vacancy graphene[J]. CIESC Journal, 2021, 72(3): 1382-1391. | |
35 | Gao Q Q. A DFT study of the ORR on M-N3 (M = Mn, Fe, Co, Ni, or Cu) co-doped graphene with moiety-patched defects[J]. Ionics, 2020, 26(5): 2453-2465. |
36 | Jo W K, Jin Y J. 2D graphene-assisted low-cost metal (Ag, Cu, Fe, or Ni)-doped TiO2 nanowire architectures for enhanced hydrogen generation[J]. Journal of Alloys and Compounds, 2018, 765: 106-112. |
37 | Singla M, Sharma D, Jaggi N. Effect of transition metal (Cu and Pt) doping/co-doping on hydrogen gas sensing capability of graphene: a DFT study[J]. International Journal of Hydrogen Energy, 2021, 46(29): 16188-16201. |
38 | 马生贵, 田博文, 周雨薇, 等. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503. |
Ma S G, Tian B W, Zhou Y W, et al. DFT study of adsorption of H2S on N-doped Stone-Wales defected graphene[J]. CIESC Journal, 2021, 72(9): 4496-4503. | |
39 | Gui Y G, Peng X, Liu K, et al. Adsorption of C2H2, CH4 and CO on Mn-doped graphene: atomic, electronic, and gas-sensing properties[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119: 113959. |
40 | Zhao C J, Wu H R. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: a DFT study[J]. Applied Surface Science, 2018, 435: 1199-1212. |
41 | Zheng Z Q, Wang H L. Different elements doped graphene sensor for CO2 greenhouse gases detection: the DFT study[J]. Chemical Physics Letters, 2019, 721: 33-37. |
42 | Avramov P V, Kudin K N, Scuseria G E. Single wall carbon nanotubes density of states: comparison of experiment and theory[J]. Chemical Physics Letters, 2003, 370(5/6): 597-601. |
43 | Yue Y X, Zuo F M, Wang B L, et al. Highly efficient catalyst for 1,1,2-trichloroethane dehydrochlorination via BN3 frustrated Lewis acid-base pairs[J]. Nano Research, 2024, 17(6): 4773-4781. |
[1] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
[2] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
[3] | 晋伊浩, 罗俊欣, 胡章茂, 王唯, 殷谦. 亲水改性硫酸镁/膨胀蛭石复合材料的吸附储热性能[J]. 化工学报, 2025, 76(4): 1852-1862. |
[4] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
[5] | 周印洁, 吉思蓓, 何松阳, 吉旭, 贺革. 机器学习辅助高通量筛选金属有机骨架用于富碳天然气中分离CO2[J]. 化工学报, 2025, 76(3): 1093-1101. |
[6] | 伏遥, 邵应娟, 钟文琪. TiO2掺杂钙基材料加压碳酸化循环储热性能实验研究[J]. 化工学报, 2025, 76(3): 1180-1190. |
[7] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
[8] | 姚佳逸, 张东辉, 唐忠利, 李文彬. 基于二级双回流的变压吸附捕碳工艺研究[J]. 化工学报, 2025, 76(2): 744-754. |
[9] | 韩志敏, 周相宇, 张宏宇, 徐志明. 不同粗糙元结构下CaCO3污垢局部沉积特性[J]. 化工学报, 2025, 76(1): 151-160. |
[10] | 王佳欣, 韦艳红, 农顺洋, 熊艳舒, 李楣, 李文. 多重量子化学理论计算解析多胺修饰壳聚糖气凝胶吸附美拉德色素分子机制[J]. 化工学报, 2025, 76(1): 107-119. |
[11] | 徐子易, 席阳, 宋泽文, 周海骏. 碳纳米材料在锌离子电池中的应用研究进展[J]. 化工学报, 2025, 76(1): 40-52. |
[12] | 陈彦霖, 周爱国, 郑家乐, 杨川箬, 葛天舒. 载体对于胺浸渍类DAC吸附剂性能的影响[J]. 化工学报, 2024, 75(S1): 217-222. |
[13] | 张佳颖, 王聪, 王雅君. CNT-Co/Bi2O3催化剂光催化协同过硫酸盐活化高效降解四环素[J]. 化工学报, 2024, 75(9): 3163-3175. |
[14] | 卢昕悦, 陈锐莹, 姜夏雪, 梁海瑞, 高歌, 叶正芳. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
[15] | 唐宇昊, 张迎迎, 赵智伟, 鲁梦悦, 张飞飞, 王小青, 杨江峰. 弱极性超微孔Sc/In-CPM-66A用于CH4/N2吸附分离性能[J]. 化工学报, 2024, 75(9): 3210-3220. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 355
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||