化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1852-1862.DOI: 10.11949/0438-1157.20240868
收稿日期:2024-07-31
修回日期:2024-12-03
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
胡章茂
作者简介:晋伊浩(1999—),男,硕士研究生,836424485@qq.com
基金资助:
Yihao JIN(
), Junxin LUO, Zhangmao HU(
), Wei WANG, Qian YIN
Received:2024-07-31
Revised:2024-12-03
Online:2025-04-25
Published:2025-05-12
Contact:
Zhangmao HU
摘要:
为强化硫酸镁在中低湿度环境下的吸附性能,采用亲水型活性剂曲拉通X-100制备硫酸镁/膨胀蛭石改性复合材料。采用两种不同改性方法制备复合材料并比较其性能。扫描电子显微镜(SEM)和X射线衍射仪(XRD)的测试结果表明成功地合成了硫酸镁/膨胀蛭石改性复合材料。利用恒温恒湿箱和热重分析仪(TG)、差式量热仪(DSC)对复合材料的吸附和储热性能进行测试,探讨了改性方法、活性剂添加量和相对湿度对吸附性能的影响,结果表明,在25℃、70%相对湿度条件下,先对膨胀蛭石亲水改性,且膨胀蛭石与活性剂质量比为10∶1时,改性复合材料具有最佳储热性能,相较于未改性复合材料,吸附量增加2.5%,脱附率提高4.1%,储热密度提升9.1%,且表现出良好的循环稳定性。
中图分类号:
晋伊浩, 罗俊欣, 胡章茂, 王唯, 殷谦. 亲水改性硫酸镁/膨胀蛭石复合材料的吸附储热性能[J]. 化工学报, 2025, 76(4): 1852-1862.
Yihao JIN, Junxin LUO, Zhangmao HU, Wei WANG, Qian YIN. Experimental investigation on hydrophilic functionalized MgSO4/expanded vermiculite composites for water adsorption and heat storage[J]. CIESC Journal, 2025, 76(4): 1852-1862.
| 样品 | ks/s-1 | R2 |
|---|---|---|
| MgSO4/EV | 0.01027 | 0.98 |
| MgSO4/XEV_1 | 0.01194 | 0.99 |
| MgSO4/XEV_3 | 0.01188 | 0.99 |
| MgSO4/XEV_5 | 0.01180 | 0.99 |
表1 四种复合材料在25℃、50%RH的吸附速率常数
Table 1 Adsorption rate constants of four composites at 25℃ and 50%RH
| 样品 | ks/s-1 | R2 |
|---|---|---|
| MgSO4/EV | 0.01027 | 0.98 |
| MgSO4/XEV_1 | 0.01194 | 0.99 |
| MgSO4/XEV_3 | 0.01188 | 0.99 |
| MgSO4/XEV_5 | 0.01180 | 0.99 |
| 1 | Wei S Y, Zhou W, Han R, et al. Influence of minerals with different porous structures on thermochemical heat storage performance of CaCl2-based composite sorbents[J]. Solar Energy Materials and Solar Cells, 2022, 243: 111769. |
| 2 | 何雅玲. 热储能技术在能源革命中的重要作用[J]. 科技导报, 2022, 40(4): 1-2. |
| He Y L. The important role of thermal energy storage technology in the energy revolution[J]. Science & Technology Review, 2022, 40(4): 1-2. | |
| 3 | 刘华, 彭佳杰, 余凯, 等. 活性氧化铝基质新型复合吸附剂的制备和储热性能[J]. 化工学报, 2020, 71(7): 3354-3361. |
| Liu H, Peng J J, Yu K, et al. Preparation and thermal storage performance of novel composite sorbent with activated alumina matrix[J]. CIESC Journal, 2020, 71(7): 3354-3361. | |
| 4 | Poupin L, Humphries T D, Paskevicius M, et al. An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage[J]. Sustainable Energy & Fuels, 2020, 4(1): 285-292. |
| 5 | 许嘉兴, 李廷贤, 王如竹. 氯化镁/沸石复合材料的吸附特性及储热性能[J]. 化工学报, 2016, 67(S2): 348-355. |
| Xu J X, Li T X, Wang R Z. Sorption characteristics and heat storage performance of MgCl2/13X zeolite composite sorbent[J]. CIESC Journal, 2016, 67(S2): 348-355. | |
| 6 | 张艳楠, 王如竹, 李廷贤. 蛭石/氯化钙复合吸附剂的吸附特性和储热性能[J]. 化工学报, 2018, 69(1): 363-370. |
| Zhang Y N, Wang R Z, Li T X. Sorption characteristics and thermal storage performance of expanded vermiculite/CaCl2 composite sorbent[J]. CIESC Journal, 2018, 69(1): 363-370. | |
| 7 | 张叶龙, 苗琪, 宋鹏飞, 等. 矿物基硫酸镁热化学吸附材料的制备与性能评价[J]. 储能科学与技术, 2023, 12(1): 42. |
| Zhang Y L, Miao Q, Song P F, et al. Preparation and performance evaluation of mineral-based magnesium sulfate thermochemical adsorbent materials[J]. Energy Storage Science and Technology, 2023, 12(1): 42. | |
| 8 | 孙忻茹, 张秋怡, 卓建坤, 等. CaCl2复合热化学储热材料的研究进展[J]. 化工进展, 2024, 43(8): 4506. |
| Sun X R, Zhang Q Y, Zhuo J K, et al. Research progress of CaCl2 composite thermochemical heat storage[J].Chemical Industry and Engineering Progress, 2024, 43(8): 4506. | |
| 9 | 张雪龄, 叶强, 谷军恒, 等. MgSO4-LiCl@MEG复合储热材料的制备与吸附储热性能[J]. 储能科学与技术, 2023, 12(9): 2778-2788. |
| Zhang X L, Ye Q, Gu J H, et al. Preparation and adsorption heat storage performance study of MgSO4-LiCl@MEG composite heat storage materials[J]. Energy Storage Science and Technology, 2023, 12(9): 2778-2788. | |
| 10 | Koçak B, Fernandez A I, Paksoy H. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects[J]. Solar Energy, 2020, 209: 135-169. |
| 11 | 汪德良, 张纯, 杨玉, 等. 基于太阳能光热发电的热化学储能体系研究进展[J]. 热力发电, 2019, 48(7): 1-9. |
| Wang D L, Zhang C, Yang Y, et al. Research progress of thermochemical energy storage system based on solar thermal power generation[J]. Thermal Power Generation, 2019, 48(7): 1-9. | |
| 12 | Xu S Z, Lemington, Wang R Z, et al. A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J]. Energy Conversion and Management, 2018, 171: 98-109. |
| 13 | van Essen V M, Zondag H A, Gores J C, et al. Characterization of MgSO4 hydrate for thermochemical seasonal heat storage[J]. Journal of Solar Energy Engineering, 2009, 131(4): 1. |
| 14 | Solé A, Martorell I, Cabeza L F. State of the art on gas-solid thermochemical energy storage systems and reactors for building applications[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 386-398. |
| 15 | Donkers P A J, Pel L, Adan O C G. Experimental studies for the cyclability of salt hydrates for thermochemical heat storage[J]. Journal of Energy Storage, 2016, 5: 25-32. |
| 16 | Zou D Q, Yue X J, He T Y, et al. Experimental research on the preparation of K2CO3/expanded vermiculite composite energy storage material[J]. Materials, 2022, 15(10): 3702. |
| 17 | Ding B, Xu C, Liao Z R, et al. Study on long-term thermochemical thermal storage performance based on SrBr2-expanded vermiculite composite materials[J]. Journal of Energy Storage, 2021, 42: 103081. |
| 18 | 夏骏, 楼波, 廖宇燊, 等. 膨胀蛭石/LaCl3复合材料的热化学储热性能[J]. 应用化工, 2022, 51(3): 722-727, 736. |
| Xia J, Lou B, Liao Y S, et al. Study of the performance of expanded vermiculite/LaCl3 composite materials for thermochemical energy storage[J]. Applied Chemical Industry, 2022, 51(3): 722-727, 736. | |
| 19 | Touloumet Q, Postole G, Massin L, et al. Investigation of the impact of zeolite shaping and salt deposition on the characteristics and performance of composite thermochemical heat storage systems[J]. Journal of Materials Chemistry A, 2023, 11(6): 2737-2753. |
| 20 | Li S Y, Huo Y J, Yan T, et al. Preparation and thermal properties of zeolite/MgSO4 composite sorption material for heat storage[J]. Renewable Energy, 2024, 224: 120166. |
| 21 | Xu S Z, Wang R Z, Wang L W, et al. Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage[J]. Energy, 2019, 167: 889-901. |
| 22 | Gao N, Deng L S, Li J, et al. Multi-form heat storage performance of expanded graphite based CaCl2 composites for low-grade heat source[J]. Energy Reports, 2022, 8: 12117-12125. |
| 23 | Reynolds J, Williams R, Elvins J, et al. Development and characterisation of an alginate and expanded graphite based composite for thermochemical heat storage[J]. Journal of Materials Science, 2023, 58(13): 5610-5624. |
| 24 | 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772. |
| Li W, Wang Q W, Zeng M. Performance test and numerical study of salt hydrate-based thermochemical heat storage materials at middle-low temperature[J]. CIESC Journal, 2021, 72(5): 2763-2772. | |
| 25 | Courbon E, D'Ans P, Skrylnyk O, et al. New prominent lithium bromide-based composites for thermal energy storage[J]. Journal of Energy Storage, 2020, 32: 101699. |
| 26 | Chen J N, Su H, Sun H C, et al. Kinetic investigation and numerical simulation of reactor with prepared diatomite/CaCO3 for high-temperature thermal energy storage application[J]. Journal of Energy Storage, 2024, 96: 112694. |
| 27 | Miao Q, Zhang Y L, Jia X, et al. MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage[J]. Solar Energy, 2021, 220: 432-439. |
| 28 | Nguyen M H, Zbair M, Dutournié P, et al. Thermochemical sorption heat storage: investigate the heat released from activated carbon beads used as porous host matrix for MgSO4 salt[J]. Journal of Energy Storage, 2023, 59: 106452. |
| 29 | Zhang Y L, Miao Q, Jia X, et al. Diatomite-based magnesium sulfate composites for thermochemical energy storage: preparation and performance investigation[J]. Solar Energy, 2021, 224: 907-915. |
| 30 | Wang Q, Xie Y Y, Ding B, et al. Structure and hydration state characterizations of MgSO4-zeolite 13X composite materials for long-term thermochemical heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110047. |
| 31 | Xie N, Luo J M, Li Z P, et al. Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 189: 33-42. |
| 32 | Yan T, Zhang H. A critical review of salt hydrates as thermochemical sorption heat storage materials: thermophysical properties and reaction kinetics[J]. Solar Energy, 2022, 242: 157-183. |
| 33 | Li W, Klemeš J J, Wang Q W, et al. Energy storage of low potential heat using lithium hydroxide based sorbent for domestic heat supply[J]. Journal of Cleaner Production, 2021, 285: 124907. |
| 34 | Kharbanda J S, Yadav S K, Soni V, et al. Modeling of heat transfer and fluid flow in epsom salt (MgSO4•7H2O) dissociation for thermochemical energy storage[J]. Journal of Energy Storage, 2020, 31: 101712. |
| [1] | 蔡天姿, 张海丰, 林海丹, 张子龙, 周鹏宇, 王柏林, 李小年. 硼掺杂氮基石墨烯检测变压器油中溶解气体CO和CO2的密度泛函理论研究[J]. 化工学报, 2025, 76(4): 1841-1851. |
| [2] | 王光磊, 刘晓玲, 徐震, 李琳. 面向压缩空气储能的气-水直接接触换热特性[J]. 化工学报, 2025, 76(4): 1595-1603. |
| [3] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| [4] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
| [5] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| [6] | 张先开, 王博宇, 郭亚丽, 沈胜强. 水平圆管降膜蒸发式冷凝器热力性能计算分析[J]. 化工学报, 2025, 76(3): 995-1005. |
| [7] | 许翔, 韩中合, 李恒凡. 结构参数对间接式太阳能储热水箱蓄热特性影响[J]. 化工学报, 2025, 76(3): 1275-1287. |
| [8] | 肖俊兵, 邹博, 任建地, 刘昌会, 贾传坤. 基于相图分析的氯化物复合熔盐储热性能研究[J]. 化工学报, 2025, 76(3): 963-974. |
| [9] | 伏遥, 邵应娟, 钟文琪. TiO2掺杂钙基材料加压碳酸化循环储热性能实验研究[J]. 化工学报, 2025, 76(3): 1180-1190. |
| [10] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
| [11] | 姚佳逸, 张东辉, 唐忠利, 李文彬. 基于二级双回流的变压吸附捕碳工艺研究[J]. 化工学报, 2025, 76(2): 744-754. |
| [12] | 谢楠楠, 陈和, 叶光华, 束忠明, 傅送保, 周兴贵. 气液搅拌釜多层桨叶相互作用及组合优化[J]. 化工学报, 2025, 76(2): 564-575. |
| [13] | 王佳欣, 韦艳红, 农顺洋, 熊艳舒, 李楣, 李文. 多重量子化学理论计算解析多胺修饰壳聚糖气凝胶吸附美拉德色素分子机制[J]. 化工学报, 2025, 76(1): 107-119. |
| [14] | 李彦, 郭红利, 苏国庆, 张建文. 加氢装置空冷器气液两相流动与冲刷腐蚀问题[J]. 化工学报, 2025, 76(1): 141-150. |
| [15] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号