| 1 |
Liu Z S, Li L J, Chen J, et al. Effects of chelating agents on electrochemical properties of Na0.9Ni0.45Mn0.55O2 cathode materials[J]. Journal of Alloys and Compounds, 2021, 855: 157485.
|
| 2 |
Kunduraci M, Buluttekin R, Mutlu R N, et al. Synergistic coupling of high capacity Li1.2Mn0.54Ni0.13Co0.13O2 and high voltage LiMn1.6Ni0.4O4 lithium-ion battery cathodes[J]. Journal of Electronic Materials, 2022, 51(2): 769-777.
|
| 3 |
Zheng Z Y, Zhou J, Zhu Y S. Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning[J]. Chemical Society Reviews, 2024, 53(6): 3134-3166.
|
| 4 |
Tolganbek N, Yerkinbekova Y, Kalybekkyzy S, et al. Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: a review[J]. Journal of Alloys and Compounds, 2021, 882: 160774.
|
| 5 |
Cao W P, Yan J T, Zhang P, et al. Cerium-doped lithium-rich Li1.2Mn0.56Ni0.11Co0.13O2 as cathode with high performance for lithium-ion batteries[J]. Ionics, 2022, 28(10): 4515-4526.
|
| 6 |
Jiang P, Van Fan Y, Klemeš J J. Impacts of COVID-19 on energy demand and consumption: challenges, lessons and emerging opportunities[J]. Applied Energy, 2021, 285: 116441.
|
| 7 |
Li X R, Chen X, Bai Q, et al. From atomistic modeling to materials design: computation-driven material development in lithium-ion batteries[J]. Science China Chemistry, 2024, 67(1): 276-290.
|
| 8 |
Na S, Park K. Hybrid dual conductor on Ni-rich NCM for superior electrochemical performance in lithium-ion batteries[J]. International Journal of Energy Research, 2022, 46(6): 7389-7398.
|
| 9 |
Jia Z H, Liu Y, Li H M, et al. In-situ polymerized PEO-based solid electrolytes contribute better Li metal batteries: challenges, strategies, and perspectives[J]. Journal of Energy Chemistry, 2024, 92: 548-571.
|
| 10 |
Huang Y H, Mai L Q, Xu H H, et al. Interdisciplinary research of materials and energy in honor of Nobel laureate John B. Goodenough[J]. Interdisciplinary Materials, 2022, 1(3): 321-322.
|
| 11 |
Chan K H, Liu H T, Azimi G. Synthesis of a nickel-rich LiNi0.6Mn0.2Co0.2O2 cathode material utilizing the supercritical carbonation process[J]. Industrial & Engineering Chemistry Research, 2023, 62(10): 4271-4280.
|
| 12 |
Ling J, Karuppiah C, Krishnan S G, et al. Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review[J]. Energy & Fuels, 2021, 35(13): 10428-10450.
|
| 13 |
Jiang X, Qin L, Yu H F, et al. All-dry synthesis of single-crystalline LiNi0.6Mn0.2Co0.2O2 cathodes for high-energy and long-life Li-ion batteries[J]. Industrial & Engineering Chemistry Research, 2024, 63(23): 10291-10298.
|
| 14 |
Soloy A, Flahaut D, Ledeuil J B, et al. Unraveling the morphological dependency of the LiNi0.6Mn0.2Co0.2O2 layered oxide reactivity in Li-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(7): 8669-8685.
|
| 15 |
Woodley C P, Cooper R A, Bartlett B M. Cu doping increases capacity retention in LiNi0.6Mn0.2Co0.2O2 (NMC622) by altering the potential of the Ni-based redox couple and inhibiting particle pulverization[J]. ACS Applied Energy Materials, 2024, 7(18): 7875-7884.
|
| 16 |
Azad N, Arabi H. Improving electrochemical performance of NMC622 cathode by coating with Cr2O3 nanopowders and modified current collector[J]. Journal of Materials Engineering and Performance, 2023, 32(12): 5603-5609.
|
| 17 |
Nitou M V M, Pang Y S, Wan Z, et al. LiFePO4 as a dual-functional coating for separators in lithium-ion batteries: a new strategy for improving capacity and safety[J]. Journal of Energy Chemistry, 2023, 86: 490-498.
|
| 18 |
Cronk A, Chen Y T, Deysher G, et al. Overcoming the interfacial challenges of LiFePO4 in inorganic all-solid-state batteries[J]. ACS Energy Letters, 2023, 8(1): 827-835.
|
| 19 |
Sun Y B, Chang C K, Zheng J N. Doping effects on ternary cathode materials for lithium-ion batteries: a review[J]. Chemphyschem, 2024, 25(17): e202300966.
|
| 20 |
Ma R, Zhao Z K, Fu J L, et al. Tuning cobalt-free nickel-rich layered LiNi0.9Mn0.1O2 cathode material for lithium-ion batteries[J]. ChemElectroChem, 2020, 7(12): 2637-2642.
|
| 21 |
Chu C T, Chang L M, Yin D M, et al. Large-sized nickel-cobalt-manganese composite oxide agglomerate anode material for long-life-span lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(12): 13811-13818.
|
| 22 |
Liu X R, Wang X L, Yue B, et al. Preparation of hierarchical LiNi x Co y Mn z O2 from solvothermal [Ni x Co y Mn z ](OH)2 via regulating the ratio of Ni, Co, and Mn and its excellent properties for lithium-ion battery cathode[J]. Journal of the Chinese Chemical Society, 2020, 67(11): 2062-2070.
|
| 23 |
Qin L, Yu H F, Jiang X, et al. All-dry solid-phase synthesis of single-crystalline Ni-rich ternary cathodes for lithium-ion batteries[J]. Science China Materials, 2024, 67(2): 650-657.
|
| 24 |
Wang H, Wu Z J, Wang M M, et al. “Acid + oxidant” treatment enables selective extraction of lithium from spent NCM523 positive electrode[J]. Batteries, 2024, 10(6): 179.
|
| 25 |
Guo X B, Song C C, Liu D C, et al. Effect of precursor structure transformation on synthesis and performance of LiNi0.5Co0.2Mn0.3O2 cathode material[J]. Solid State Sciences, 2022, 131: 106954.
|
| 26 |
Hu Q, He Y F, Ren D S, et al. Targeted masking enables stable cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6V[J]. Nano Energy, 2022, 96: 107123.
|
| 27 |
Xiong Y K, Chang S H, Li Y J, et al. Enhancing surface and internal structural stability of LiNi0.8Co0.1Mn0.1O2 by yttrium phosphate dual effects[J]. Journal of Alloys and Compounds, 2022, 894: 162155.
|
| 28 |
Reissig F, Lange M A, Haneke L, et al. Synergistic effects of surface coating and bulk doping in Ni-rich lithium nickel cobalt manganese oxide cathode materials for high-energy lithium ion batteries[J]. ChemSusChem, 2022, 15(4): e202102220.
|
| 29 |
Akhilash M, Salini P S, John B, et al. Surface modification on nickel rich cathode materials for lithium-ion cells: a mini review[J]. Chemical Record, 2023, 23(11): e202300132.
|
| 30 |
Soloy A, Flahaut D, Foix D, et al. Reactivity at the electrode-electrolyte interfaces in Li-ion and gel electrolyte lithium batteries for LiNi0.6Mn0.2Co0.2O2 with different particle sizes[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 28792-28806.
|
| 31 |
You L Z, Li G X, Huang B, et al. Surface-reinforced NCM811 with enhanced electrochemical performance for Li-ion batteries[J]. Journal of Alloys and Compounds, 2022, 918: 165488.
|