化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 339-348.DOI: 10.11949/0438-1157.20240717
• 过程安全 • 上一篇
赵焕娟1,2(
), 包颖昕1, 于康2, 刘婧1, 钱新明3
收稿日期:2024-06-26
修回日期:2024-07-02
出版日期:2024-12-25
发布日期:2024-12-17
通讯作者:
赵焕娟
作者简介:赵焕娟(1985—),女,博士,副教授,ziai.1985@163.com
基金资助:
Huanjuan ZHAO1,2(
), Yingxin BAO1, Kang YU2, Jing LIU1, Xinming QIAN3
Received:2024-06-26
Revised:2024-07-02
Online:2024-12-25
Published:2024-12-17
Contact:
Huanjuan ZHAO
摘要:
对两种不同碳氢比例的多元组分进行爆轰不稳定性分析。在D=80 mm圆管中进行爆轰实验,分析多元组分的爆轰速度变化特性和胞格结构变化特性。分别从三波点轨迹间距、螺距和化学反应进程角度分析氢分压对多元组分爆轰不稳定性的影响,发现多元组分#1的爆轰速度与氢气预混气类似,虽有波动但总体较为平稳,始终稳定在0.95VCJ以上;多元组分#2的爆轰速度与甲烷预混气类似,波动幅度较大。从胞格结构特性角度分析,发现爆轰螺旋头数的变化趋势与速度变化趋势相似。三种不稳定性分析方法均得到多元组分#1的稳定性比多元组分#2的稳定性大。研究结果有助于整体把握多元组分的爆轰传播机理。
中图分类号:
赵焕娟, 包颖昕, 于康, 刘婧, 钱新明. 多元组分爆轰不稳定性定量实验研究[J]. 化工学报, 2024, 75(S1): 339-348.
Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component[J]. CIESC Journal, 2024, 75(S1): 339-348.
| 多元组分 | CH4 | H2 | O2 | N2 | C2H2 | C2H4 | CO | CO2 | 其他 |
|---|---|---|---|---|---|---|---|---|---|
| #1 | 0.021 | 0.064 | 0.277 | 0.375 | 0.016 | 0.031 | 0.054 | 0.049 | 0.001 |
| #2 | 0.012 | 0.027 | 0.277 | 0.429 | 0.015 | 0.025 | 0.047 | 0.044 | 0.001 |
表1 两种多元组分各气体组分比例
Table 1 Mixtures with different fuel compositions used in the experiment
| 多元组分 | CH4 | H2 | O2 | N2 | C2H2 | C2H4 | CO | CO2 | 其他 |
|---|---|---|---|---|---|---|---|---|---|
| #1 | 0.021 | 0.064 | 0.277 | 0.375 | 0.016 | 0.031 | 0.054 | 0.049 | 0.001 |
| #2 | 0.012 | 0.027 | 0.277 | 0.429 | 0.015 | 0.025 | 0.047 | 0.044 | 0.001 |
| 预混气 | 初始压力/kPa | 方差/mm2 |
|---|---|---|
| 多元组分#1 | 20 | 6.72 |
| 25 | 5.25 | |
| 40 | 2.72 | |
| 50 | 1.75 | |
| 80 | 2.87 | |
| 100 | 3.10 | |
| 多元组分#2 | 20 | 8.63 |
| 25 | 7.61 | |
| 40 | 6.90 | |
| 50 | 8.38 | |
| 80 | 4.02 | |
| 100 | 4.15 | |
| 2H2+O2 | 15 | 0.58 |
| CH4+2O2 | 15 | 2.70 |
表2 各预混气三波点轨迹间距方差
Table 2 Variance of triple point trajectory spacing for each premixed mixture
| 预混气 | 初始压力/kPa | 方差/mm2 |
|---|---|---|
| 多元组分#1 | 20 | 6.72 |
| 25 | 5.25 | |
| 40 | 2.72 | |
| 50 | 1.75 | |
| 80 | 2.87 | |
| 100 | 3.10 | |
| 多元组分#2 | 20 | 8.63 |
| 25 | 7.61 | |
| 40 | 6.90 | |
| 50 | 8.38 | |
| 80 | 4.02 | |
| 100 | 4.15 | |
| 2H2+O2 | 15 | 0.58 |
| CH4+2O2 | 15 | 2.70 |
| 多元组分 | a | b | 关系式 | R2 |
|---|---|---|---|---|
| #1 | 227.2997 | 0.5035 | 0.8999 | |
| #2 | 448.3514 | 0.7966 | 0.9784 |
表3 螺距与初始压力关系式参数
Table 3 Parameters of the relationship between pitch and initial pressure
| 多元组分 | a | b | 关系式 | R2 |
|---|---|---|---|---|
| #1 | 227.2997 | 0.5035 | 0.8999 | |
| #2 | 448.3514 | 0.7966 | 0.9784 |
| 预混气 | X | εI/(kJ/mol) | 胞格不稳定度 |
|---|---|---|---|
| CH4+2O2 | 52.50 | 11.84 | 高度不稳定 |
| 2H2+O2+50%Ar | 0.74 | 4.52 | 高度稳定 |
表4 三种预混气的不稳定性参数X、有效活化能与胞格不稳定性对比[29]
Table 4 Comparison of instability parameter X, effective activation energy and cell instability of the three premixed gases[29]
| 预混气 | X | εI/(kJ/mol) | 胞格不稳定度 |
|---|---|---|---|
| CH4+2O2 | 52.50 | 11.84 | 高度不稳定 |
| 2H2+O2+50%Ar | 0.74 | 4.52 | 高度稳定 |
| 项目 | ||||
|---|---|---|---|---|
| 理论值 | 52.50 | 0.74 | 13.53 | 16.67 |
| 实验值 | 2.70 | 0.58 | 1.10 | 1.23 |
| 偏差 | 94.86% | 21.62% | 91.86% | 92.62% |
表5 不稳定性参数比较
Table 5 Comparison of instability parameters
| 项目 | ||||
|---|---|---|---|---|
| 理论值 | 52.50 | 0.74 | 13.53 | 16.67 |
| 实验值 | 2.70 | 0.58 | 1.10 | 1.23 |
| 偏差 | 94.86% | 21.62% | 91.86% | 92.62% |
| 预混气 | 基元反应进程 |
|---|---|
| 2H2+O2+3Ar[ | H2+O2 HO2·+H· |
H2+M H·+H·+M | |
H·+O2 OH·+O· | |
O·+H2 OH·+H· | |
HO2·+H· OH·+OH· | |
H2+HO2· H2O2+H· | |
H2O2 OH·+OH· | |
OH·+H2 H2O+H· | |
| CH4+2O2[ | CH3+OH HCOH+H2 |
HCOH+O2 CO2+H2O | |
HCOH+O2 CO2+H+OH | |
CH3OH CH3+OH | |
CH3OH+CH3 CH3O+CH4 | |
CH2OH+O2 CH2O+HO2 | |
CH2OH+HCO 2CH2O | |
CH2O+H CH2OH | |
CH3+OH CH2OH+H | |
CH2+O2 HCO+OH | |
CH4+CH2 2CH3 | |
CH2+O2 CO2+2H | |
CH3+OH CH2+H2O | |
CH2(S)+O2 CO+H2O | |
CH2(S)+H2 CH3+H | |
CH2(S)+O2 H+OH+CO | |
CH3+OH CH2(S)+H2O |
表6 不同气体的反应进程对比
Table 6 Comparison of reaction processes of different premixed mixtures
| 预混气 | 基元反应进程 |
|---|---|
| 2H2+O2+3Ar[ | H2+O2 HO2·+H· |
H2+M H·+H·+M | |
H·+O2 OH·+O· | |
O·+H2 OH·+H· | |
HO2·+H· OH·+OH· | |
H2+HO2· H2O2+H· | |
H2O2 OH·+OH· | |
OH·+H2 H2O+H· | |
| CH4+2O2[ | CH3+OH HCOH+H2 |
HCOH+O2 CO2+H2O | |
HCOH+O2 CO2+H+OH | |
CH3OH CH3+OH | |
CH3OH+CH3 CH3O+CH4 | |
CH2OH+O2 CH2O+HO2 | |
CH2OH+HCO 2CH2O | |
CH2O+H CH2OH | |
CH3+OH CH2OH+H | |
CH2+O2 HCO+OH | |
CH4+CH2 2CH3 | |
CH2+O2 CO2+2H | |
CH3+OH CH2+H2O | |
CH2(S)+O2 CO+H2O | |
CH2(S)+H2 CH3+H | |
CH2(S)+O2 H+OH+CO | |
CH3+OH CH2(S)+H2O |
| 1 | Zhang K, Jin D, Song F L. Experimental research on nanosecond pulsed gliding arc discharge plasma cracking kerosene[J]. Journal of Propulsion Technology, 2022, 43(7): 419-427. |
| 2 | Liu M X, Tan N X, Wang J B. Mechanism construction and kinetic simulation for the combustion of cracked kerosene[J]. Chem. Res. Appl., 2019, 31: 278-282. |
| 3 | Rudy W, Zbikowski M, Teodorczyk A. Detonations in hydrogen-methane-air mixtures in semi confined flat channels[J]. Energy, 2016, 116: 1479-1483. |
| 4 | Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6): 1204-1216. |
| 5 | Zhong Y P, Jin D, Wu Y, et al. Investigation of rotating detonation wave fueled by“ethylene-acetylene-hydrogen”mixture[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14787-14797. |
| 6 | Zhou S B, Ma H, Chen S H, et al. Experimental investigation on propagation characteristics of rotating detonation wave with a hydrogen-ethylene-acetylene fuel[J]. Acta Astronautica, 2019, 157: 310-320. |
| 7 | Zhou S B, Ma H, Zhou C S, et al. Experimental research on the propagation process of rotating detonation wave with a gaseous hydrocarbon mixture fuel[J]. Acta Astronautica, 2021, 179: 1-10. |
| 8 | 韩家祥, 白桥栋, 邱晗, 等. 燃烧室结构对煤油预燃裂解气旋转爆轰特性的影响[J]. 兵工学报. 2024, 45(8): 2837-2850. |
| Han J X, Bai Q D, Qiu H, et al. Influence of combustor configuration on rotating detonation characteristics of kerosene pre-combustion cracking gas[J]. Acta Armrmamentarii. 2024, 45(8): 2837-2850. | |
| 9 | 陈昊, 白桥栋, 翁春生. 旋转爆轰燃烧室内煤油多元组分冷流掺混特性研究[J]. 弹道学报, 2023, 35(2): 9-19. |
| Chen H, Bai Q D, Weng C S. Research on cold flow mixing characteristics of kerosene pyrolysis gas in rotating detonation combustor[J]. Journal of Ballistics, 2023, 35(2): 9-19. | |
| 10 | 吴敏宣, 白桥栋, 翁春生, 等. C2H4/CH4/H2混合气旋转爆轰波传播特性数值模拟研究[J]. 推进技术, 2022, 43(11): 210712. |
| Wu M X, Bai Q D, Weng C S, et al. Numerical simulation of rotating detonation wave propagation characteristics of C2H4/CH4/H2 mixture[J]. Journal of Propulsion Technology, 2022, 43(11): 210712. | |
| 11 | 吴明亮, 郑权, 续晗 等. 氢气占比对氢气-煤油-空气旋转爆轰波传播特性的影响[J]. 兵工学报, 2022, 43(1): 86-97. |
| Wu M L, Zheng Q, Xu H, et al. The influence of hydrogen proportion on the propagation characteristics of hydrogen-kerosene-air rotating detonation waves[J]. Acta Armrmamentarii, 2022, 43(1): 86-97. | |
| 12 | 刘秋月, 王放, 翁春生, 等. 预混煤油/空气两相旋转爆轰传播特性数值研究[J]. 推进技术, 2024, 45(9): 113-123. |
| Liu Q Y, Wang F, Weng C S, et al. Numerical study on propagation characteristics of two-phase rotating detonation of premixed kerosene/air[J]. Journal of Propulsion Technology, 2024, 45(9): 113-123. | |
| 13 | 黄瀚黎, 吕亚锦, 郑权, 等. 当量比对常温煤油-氢气-空气旋转爆轰传播影响[J]. 航空动力学报, 2024, 39(9): 20220712. |
| Huang H L, Lv Y J, Zheng Q, et al. Effect of equivalence ratio on kerosene-hydrogen-air rotating detonation propagation at room temperature[J]. Journal of Aerospace Power, 2024, 39(9): 20220712. | |
| 14 | Zheng Q, Hao L M, Weng C S, et al. Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation Technology, 2020, 16(6): 1106-1115. |
| 15 | Li X, Li J, Qin Q, et al. Experimental study on detonation characteristics of liquid kerosene/air rotating detonation engine[J]. Acta Astronautica, 2024, 215: 124-134. |
| 16 | Kindracki J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures[J]. Aerospace Science and Technology, 2015, 43: 445-453. |
| 17 | Frolov S M, Aksenov V S, Ivanov V S, et al. Continuous detonation combustion of ternary “hydrogen-liquid propane-air” mixture in annular combustor[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16808-16820. |
| 18 | Prakash S, Raman V, Lietz C, et al. Numerical simulation of a methane-oxygen rotating detonation rocket engine[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3777-3786. |
| 19 | Bouras F, El Hadi Attia M, Khaldi F, et al. Control of methane flame properties by hydrogen fuel addition: application to power plant combustion chamber[J]. International Journal of Hydrogen Energy, 2017, 42(13): 8932-8939. |
| 20 | Shih H, Liu C. A computational study on the combustion of hydrogen/methane blended fuels for a micro gas turbine[J]. International Journal of Hydrogen Energy, 2014, 39 (27): 15103-15115. |
| 21 | Burbano H J, Amell A A, García J M. Effects of hydrogen addition to methane on the flame structure and CO emissions in atmospheric burners[J]. International Journal of Hydrogen Energy, 2008, 33 (13): 3410-3415. |
| 22 | Yang C, Han Q, Liu H, et al. Ignition characteristics of methane-air mixture at low initial temperature[J]. Frontiers in Energy Research, 2023, 10: 1003470. |
| 23 | Welch C, Depperschmidt D, Miller R, et al. Experimental analysis of wave propagation in a methane-fueled rotating detonation combustor[C]//Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Oslo, Norway, 2018. |
| 24 | Bykovskii F, Zhdan S, Vedernikov E. Continuous detonation of methane/hydrogen-air mixtures in an annular cylindrical combustor[J]. Combustion, Explosion, and Shock Waves, 2018, 54: 472-481. |
| 25 | Cojocea A V, Cuciuc T, Porumbel I, et al. Experimental investigations of hydrogen fuelled pulsed detonation combustor[C]//Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Rotterdam, Netherlands, 2022. |
| 26 | Zheng Z J, Wan Z J, Li P, et al. High temperature auto-ignition delay characteristics of pyrolysis gas of aviation kerosene[J]. Chinese Journal of Energetic Materials, 2020, 28(5): 391-397. |
| 27 | 赵焕娟, Lee J H S, 张英华. 甲烷预混气螺旋爆轰的定量不稳定性研究[J]. 工程科学学报, 2016, 38(11): 1522-1531. |
| Zhao H J, Lee J H S, Zhang Y H. Quantitative irregularity analysis for spinning detonation of premixed CH4+2O2 [J]. Chinese Journal of Engineering, 2016, 38(11): 1522-1531. | |
| 28 | Gao Y, Ng H D, Lee J H S. Minimum tube diameters for steady propagation of gaseous detonations[J]. Shock Waves, 2014, 24(4): 447-454. |
| 29 | Ng H D, Radulescu M I, Higgins A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics[J]. Combustion Theory and Modelling, 2005, 9(3): 385-401. |
| 30 | 李象远, 申屠江涛, 李宜蔚, 等. 燃烧反应机理构建的极小反应网络方法——氢氧燃烧[J]. 高等学校化学学报, 2020, 41(4): 772-779. |
| Li X Y, Shentu J T, Li Y W, et al. Combustion mechanism construction based on minimized reaction network: hydrogen-oxygen combustion[J]. Chemical Journal of Chinese Universities, 2020, 41(4): 772-779. | |
| 31 | 黄婷, 张浩楠, 薛洁, 等. 甲烷机理的简化及其在Flame D火焰数值模拟中的应用[J]. 化学研究与应用, 2022, 34(10): 2425-2434. |
| Huang T, Zhang H N, Xu J, et al. Reduction of methane mechanism and its application in the numerical simulation of flame D[J]. Chemical Research and Application, 2022, 34(10): 2425-2434. |
| [1] | 石美琳, 赵连达, 邓行健, 王静松, 左海滨, 薛庆国. 催化甲烷重整工艺的研究进展[J]. 化工学报, 2024, 75(S1): 25-39. |
| [2] | 徐宏标, 杨亮, 李子栋, 刘道平. 盐水微滴/泡沫铜复合体系中甲烷水合物生成动力学研究[J]. 化工学报, 2024, 75(9): 3287-3296. |
| [3] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
| [4] | 王树振, 王玉婷, 马梦茜, 张巍, 向江南, 鲁海莹, 王琰, 范彬彬, 郑家军, 代卫炯, 李瑞丰. 两步晶化合成ZSM-22分子筛及其临氢异构反应性能[J]. 化工学报, 2024, 75(9): 3176-3187. |
| [5] | 王军锋, 张俊杰, 张伟, 王家乐, 双舒炎, 张亚栋. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286. |
| [6] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
| [7] | 王靖宇, 刘佳, 徐继香, 王磊. 薄片状PtZn@Silicalite-1分子筛的合成及催化丙烷脱氢性能研究[J]. 化工学报, 2024, 75(9): 3188-3197. |
| [8] | 胡德政, 王榕, 王世栋, 杨文菲, 张宏伟, 袁珮. 兼具加氢和脱硫活性的富含Ni δ+非晶态NiP@γ-Al2O3催化剂的构筑及其用于石油树脂加氢的性能研究[J]. 化工学报, 2024, 75(9): 3152-3162. |
| [9] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
| [10] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
| [11] | 黄晓峰, 刘朝晖, 杨帆. 高密度碳氢燃料JP-10流动换热及热裂解结焦实验研究[J]. 化工学报, 2024, 75(8): 2917-2928. |
| [12] | 杨露, 刘聪聪, 孟彤彤, 张博远, 杨腾飞, 邓文安, 王晓斌. 分散型催化剂在煤/重油共炼体系中的加氢抑焦作用[J]. 化工学报, 2024, 75(7): 2556-2564. |
| [13] | 李沛奇, 陈雪娇, 武博翔, 蒋榕培, 杨超, 刘朝晖. 高参数石油基和煤基火箭煤油射线法密度测量实验研究[J]. 化工学报, 2024, 75(7): 2422-2432. |
| [14] | 张广宇, 付然飞, 孙冰, 袁俊聪, 冯翔, 杨朝合, 徐伟. CO2-环氧丙烷合成碳酸丙烯酯:氢键供体效应研究[J]. 化工学报, 2024, 75(6): 2243-2251. |
| [15] | 常成功, 宋皓楠, 雷飞霞, 狄子琛, 程芳琴. 高炉喷吹重整焦炉气工艺分析及减碳潜力研究[J]. 化工学报, 2024, 75(6): 2344-2352. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号