化工学报 ›› 2024, Vol. 75 ›› Issue (2): 675-684.DOI: 10.11949/0438-1157.20231039
张欣(), 薛宇, 马懿星(
), 王学谦, 王郎郎, 谢妮霏, 陈怡, 周晓霞
收稿日期:
2023-10-08
修回日期:
2024-01-22
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
马懿星
作者简介:
张欣(1999—),女,硕士研究生,2411621385@qq.com
基金资助:
Xin ZHANG(), Yu XUE, Yixing MA(
), Xueqian WANG, Langlang WANG, Nifei XIE, Yi CHEN, Xiaoxia ZHOU
Received:
2023-10-08
Revised:
2024-01-22
Online:
2024-02-25
Published:
2024-04-10
Contact:
Yixing MA
摘要:
利用电晕放电以及介质阻挡放电两种低温等离子体产生方式净化氰化氢(HCN),同时对二者的反应机理进行探讨。结果表明,在电晕放电中当输入能量比(SIE)达到8.3 kJ/L,HCN净化效率为76%,在介质阻挡放电中当SIE为11.9 kJ/L时,HCN净化效率为94%;通过Gaussian 软件利用密度泛函理论(DFT)引入外电场,计算分析了两种不同放电方式在HCN净化过程中的差异,在引入外电场之后HCN分子的分子结构以及体系能量均发生了变化,在不同的放电方式中,HCN转化的中间产物—OCN在电晕放电中主要转化为CO2与N2,而在介质阻挡放电中HCN更容易与体系中—OH结合生成H2O与—CN,—CN会在介质阻挡放电中的高电子、粒子密度的作用下聚合为C3N4。
中图分类号:
张欣, 薛宇, 马懿星, 王学谦, 王郎郎, 谢妮霏, 陈怡, 周晓霞. 电晕放电与介质阻挡放电净化氰化氢的机理[J]. 化工学报, 2024, 75(2): 675-684.
Xin ZHANG, Yu XUE, Yixing MA, Xueqian WANG, Langlang WANG, Nifei XIE, Yi CHEN, Xiaoxia ZHOU. Purification mechanism of hydrogen cyanide by corona discharge and dielectric barrier discharge[J]. CIESC Journal, 2024, 75(2): 675-684.
处理技术 | 脱除 效果/% | 操作温度 | 优点 | 缺点 |
---|---|---|---|---|
吸收法 | 90~98 | 常温 | 技术成熟 | 吸附容量有限,回收处理难 |
吸附法 | 80~90 | 60℃以下 | 能耗低,处理效率高 | 吸附剂脱附过程复杂 |
燃烧法 | 60~70 | 700℃ | 过程简单 | 运行成本高,易产生二次污染 |
催化氧化法 | 75~98 | 250℃以上 | 应用广泛,处理彻底 | 贵金属成本较高,催化剂易中毒 |
催化水解法 | 95~99 | 200℃以下 | 能耗低,简化处理方式 | 工业化应用还在实验中 |
等离子体净化法(本文) | 74~94 | 低温(60℃以下) | 同时处理多种污染物,处理效率高 | 仍然处于实验与理论研究阶段,无法进行工业实际应用 |
表1 不同方法净化HCN的优缺点对比
Table 1 Comparison of advantages and disadvantages of different methods for purifying HCN
处理技术 | 脱除 效果/% | 操作温度 | 优点 | 缺点 |
---|---|---|---|---|
吸收法 | 90~98 | 常温 | 技术成熟 | 吸附容量有限,回收处理难 |
吸附法 | 80~90 | 60℃以下 | 能耗低,处理效率高 | 吸附剂脱附过程复杂 |
燃烧法 | 60~70 | 700℃ | 过程简单 | 运行成本高,易产生二次污染 |
催化氧化法 | 75~98 | 250℃以上 | 应用广泛,处理彻底 | 贵金属成本较高,催化剂易中毒 |
催化水解法 | 95~99 | 200℃以下 | 能耗低,简化处理方式 | 工业化应用还在实验中 |
等离子体净化法(本文) | 74~94 | 低温(60℃以下) | 同时处理多种污染物,处理效率高 | 仍然处于实验与理论研究阶段,无法进行工业实际应用 |
序号 | 化学方程式 | 反应能垒/(kJ/mol) |
---|---|---|
电晕放电 | ||
① | HCN+O2 | 264.9 |
② | OH+HCN | 64.5 |
③ | OCN+·O | 132.5 |
④ | 2OCN | 164.9 |
⑤ | 2NO+O2 | 326.9 |
⑥ | 2CO+O2 | 196.3 |
介质阻挡放电 | ||
① | HCN+O2 | 249.7 |
② | 2OCN | 158.9 |
③ | OCN+·O | 56.9 |
④ | OH+HCN | 46.3 |
⑤ | CN![]() | 423.6 |
⑥ | H2O+HCN | 284.0 |
⑦ | 2NH3 | 234.6 |
表2 电晕放电与介质阻挡放电反应方程式及能垒
Table 2 Reaction equations and energy barriers of corona discharge and dielectric barrier discharge
序号 | 化学方程式 | 反应能垒/(kJ/mol) |
---|---|---|
电晕放电 | ||
① | HCN+O2 | 264.9 |
② | OH+HCN | 64.5 |
③ | OCN+·O | 132.5 |
④ | 2OCN | 164.9 |
⑤ | 2NO+O2 | 326.9 |
⑥ | 2CO+O2 | 196.3 |
介质阻挡放电 | ||
① | HCN+O2 | 249.7 |
② | 2OCN | 158.9 |
③ | OCN+·O | 56.9 |
④ | OH+HCN | 46.3 |
⑤ | CN![]() | 423.6 |
⑥ | H2O+HCN | 284.0 |
⑦ | 2NH3 | 234.6 |
1 | 蒋明, 宁平, 王重华, 等. 含氰化氢废气治理研究进展[J]. 化工进展, 2012, 31(11): 2563-2569. |
Jiang M, Ning P, Wang Z H, et al. Research progress of HCN-containing exhaust gas treatment[J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2563-2569. | |
2 | Wang Z H, Jiang M, Ning P, et al. Thermodynamic modeling and gaseous pollution prediction of the yellow phosphorus production[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12194-12202. |
3 | Yuan S, Zhou Z J, Li J, et al. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy & Fuels, 2010, 24(11): 6166-6171. |
4 | Jiang M, Wang Z H, Ning P, et al. Dust removal and purification of calcium carbide furnace off-gas[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3): 901-907. |
5 | 张艳琨, 杨春晓, 张可欣, 等. HCN气体在金属Cu、Zn表面吸附的密度泛函研究[J]. 原子与分子物理学报, 2021, 38(6): 47-52. |
Zhang Y K, Yang C X, Zhang K X, et al. Density functional study of HCN gas adsorption on Cu and Zn surfaces[J]. Journal of Atomic and Molecular Physics, 2021, 38(6): 47-52. | |
6 | Li Y J, Zhao Q, Yang H, et al. Adsorption performance of gaseous HCN on Ni/Al hydrotalcite-derived oxides[J]. Journal of Chemical Engineering of Japan, 2019, 52(5): 392-400. |
7 | Arani B O, Frouzakis C E, Mantzaras J, et al. Direct numerical simulation of turbulent channel-flow catalytic combustion: effects of Reynolds number and catalytic reactivity[J]. Combustion and Flame, 2018, 187: 52-66. |
8 | Schäfer S, Bonn B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion(Part 1): Homogeneous reactions[J]. Fuel, 2000, 79(10): 1239-1246. |
9 | Wang L L, Wang X Q, Cheng J H, et al. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal[J]. Applied Surface Science, 2018, 439: 213-221. |
10 | Wang X Q, Cheng J H, Wang X Y, et al. Mn based catalysts for driving high performance of HCN catalytic oxidation to N2 under micro-oxygen and low temperature conditions[J]. Chemical Engineering Journal, 2018, 333: 402-413. |
11 | Hu Y N, Liu J P, Cheng J H, et al. Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe, Cu) oxides[J]. Applied Surface Science, 2018, 427: 843-850. |
12 | Wang Q, Wang X Q, Wang L L, et al. Catalytic oxidation and hydrolysis of HCN over La x Cu y /TiO2 catalysts at low temperatures[J]. Microporous and Mesoporous Materials, 2019, 282: 260-268. |
13 | Wang X Q, Jing X L, Wang F, et al. Coupling catalytic hydrolysis and oxidation on metal-modified activated carbon for HCN removal[J]. RSC Advances, 2016, 6(62): 57108-57116. |
14 | 王明飞. La-TiO2催化剂低温催化水解氰化氢的研究[D]. 昆明: 昆明理工大学, 2022. |
Wang M F. Study on catalytic hydrolysis of hydrogen cyanide with La-TiO2 catalyst at low temperature[D]. Kunming: Kunming University of Science and Technology, 2022. | |
15 | Hinde P, Demidyuk V, Gkelios A, et al. Plasma catalysis: a review of the interdisciplinary challenges faced: realising the potential of plasma catalysis on a commercial scale[J]. Johnson Matthey Technology Review, 2020, 64(2): 138-147. |
16 | Zhu X B, Gao X, Qin R, et al. Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor[J]. Applied Catalysis B: Environmental, 2015, 170/171: 293-300. |
17 | 徐明铭. 空气湿度对直流电晕放电影响的研究[D]. 济南: 山东大学, 2014. |
Xu M M. Study on influences of air humidity on direct current corona discharge[D]. Jinan: Shandong University, 2014. | |
18 | Wang X Q, Xu K, Ma Y X, et al. Simultaneous removal of H2S and dust in the tail gas by DC corona plasma[J]. Plasma Chemistry and Plasma Processing, 2016, 36(6): 1545-1558. |
19 | 赵艳辉, 周建刚, 吴晓东, 等. 不同结构介质阻挡放电的放电特性[J]. 大连海事大学学报, 2004, 30(3): 59-61, 87. |
Zhao Y H, Zhou J G, Wu X D, et al. Study on discharge characteristic of different configurable DBD[J]. Journal of Dalian Maritime University, 2004, 30(3): 59-61, 87. | |
20 | Kok D H K, Ibrahim R K R, Toemen S, et al. The catalytic efficiency of Ru/Mn/Ce-Al2O3 in the reduction of HCN in dry methane reforming with CO2 assisted by non-thermal plasma[J]. Journal of Physics: Conference Series, 2023, 2432(1): 012011. |
21 | Mohan N, Vijayalakshmi K P, Koga N, et al. Comparison of aromatic NH···π, OH···π, and CH···π interactions of alanine using MP2, CCSD, and DFT methods[J]. Journal of Computational Chemistry, 2010, 31(16): 2874-2882. |
22 | Devlin F J, Stephens P J. Ab initio density functional theory study of the structure and vibrational spectra of cyclohexanone and its isotopomers[J]. The Journal of Physical Chemistry A, 1999, 103(4): 527-538. |
23 | Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy[J]. Physical Chemistry Chemical Physics: PCCP, 2005, 7(18): 3297-3305. |
24 | Neitola R, Pakkanen T A. Ab initio studies on nanoscale friction between fluorinated diamond surfaces: effect of model size and level of theory[J]. The Journal of Physical Chemistry B, 2006, 110(33): 16660-16665. |
25 | 纪红兵, 许建华, 谢俊锋, 等. 原位DRIFTS研究CH4部分氧化和CO2重整的耦合[J]. 光谱学与光谱分析, 2008, 28(6): 1246-1250. |
Ji H B, Xu J H, Xie J F, et al. In-situ DRIFTS study of coupling partial oxidation of methane and carbon dioxide reforming[J]. Spectroscopy and Spectral Analysis, 2008, 28(6): 1246-1250. | |
26 | Lu N, Bao X D, Jiang N, et al. Non-thermal plasma-assisted catalytic dry reforming of methane and carbon dioxide over G-C3N4-based catalyst[J]. Topics in Catalysis, 2017, 60(12): 855-868. |
27 | Zhang Q Z, Zhang R Q, Chan K S, et al. Ab initio and variational transition state approach to β-C3N4 formation: kinetics for the reaction of CH3NH2 with H[J]. The Journal of Physical Chemistry A, 2005, 109(40): 9112-9117. |
28 | 暴晓丁. DBD等离子体协同g-C3N4基催化剂转化温室气体研究[D]. 大连: 大连理工大学, 2017. |
Bao X D. Study on the transformation of greenhouse gases by DBD plasma with g-C3N4 based catalyst[D]. Dalian: Dalian University of Technology, 2017. | |
29 | Ray D, Chawdhury P, Subrahmanyam C. A facile method to decompose CO2 using a g-C3N4-assisted DBD plasma reactor[J]. Environmental Research, 2020, 183: 109286. |
30 | Dong H, Guo X T, Yang C, et al. Synthesis of g-C3N4 by different precursors under burning explosion effect and its photocatalytic degradation for tylosin[J]. Applied Catalysis B: Environmental, 2018, 230: 65-76. |
31 | Manzetti S, Lu T. Alternant conjugated oligomers with tunable and narrow HOMO-LUMO gaps as sustainable nanowires[J]. RSC Advances, 2013, 3(48): 25881-25890. |
32 | Crowley J M, Tahir-Kheli J, Goddard W A. Resolution of the band gap prediction problem for materials design[J]. The Journal of Physical Chemistry Letters, 2016, 7(7): 1198-1203. |
[1] | 刘坤, 尹远, 耿文强, 夏昊天. 不同操作参数下介质阻挡放电的固氮性能研究及机理分析[J]. 化工学报, 2022, 73(9): 4045-4053. |
[2] | 杜峰, 尹思琦, 罗辉, 邓文安, 李传, 黄振薇, 王文静. H2在Mo x S y 团簇上吸附解离的尺寸效应研究[J]. 化工学报, 2022, 73(9): 3895-3903. |
[3] | 俞夏琪, 冯格, 赵金燕, 李嘉远, 邓声威, 郑靖楠, 李雯雯, 王亚秋, 沈榄, 刘旭, 徐威威, 王建国, 王式彬, 姚子豪, 毛成立. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517. |
[4] | 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181. |
[5] | 王小西, 李笑艳, 王保伟. 介质阻挡放电微等离子体分解二氧化碳研究[J]. 化工学报, 2022, 73(3): 1343-1350. |
[6] | 罗小松, 黄金保, 周梅, 牟鑫, 徐伟伟, 吴雷. 对苯二甲酸丁二醇酯二聚体水/醇/氨解机理的理论研究[J]. 化工学报, 2022, 73(11): 4859-4871. |
[7] | 朱先会, 王甫, 夏杰成, 袁金良. 功能型离子液体协同吸收NH3和CO2的密度泛函理论研究[J]. 化工学报, 2022, 73(10): 4324-4334. |
[8] | 龚翔, 李林森, 姜召. PdCo/SiO2双金属催化剂用于杂环储氢载体的高效脱氢[J]. 化工学报, 2022, 73(10): 4448-4460. |
[9] | 马生贵, 田博文, 周雨薇, 陈琳, 江霞, 高涛. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503. |
[10] | 张芳芳, 韩敏, 赵娟, 凌丽霞, 章日光, 王宝俊. 单空缺石墨烯负载的Pd单原子催化剂上NO还原的密度泛函理论研究[J]. 化工学报, 2021, 72(3): 1382-1391. |
[11] | 唐伟强, 谢鹏, 徐小飞, 赵双良. 反应密度泛函理论的构建与初步应用[J]. 化工学报, 2021, 72(2): 633-652. |
[12] | 葛冰青, 阴义轩, 王亚溪, 张宏伟, 袁珮. 溶剂对丁腈橡胶溶解、尺寸、结构和催化加氢的影响研究[J]. 化工学报, 2021, 72(1): 543-554. |
[13] | 刘佳鑫, 徐宇, 花儿. 异辛基乙二胺-酰基丙氨酸型质子化离子液体的分子间氢键相互作用[J]. 化工学报, 2020, 71(S1): 15-22. |
[14] | 狄玲, 陈放, 付荣荣, 杨辰, 邢杨, 王晓宁. 富电子LMOF对有机农药的检测机理研究[J]. 化工学报, 2020, 71(8): 3830-3838. |
[15] | 孙巍, 左然. MMAl在NH2与H混合覆盖的AlN(0001)-Al表面的吸附与扩散研究[J]. 化工学报, 2020, 71(7): 3213-3219. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||