化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1484-1492.DOI: 10.11949/0438-1157.20241192
李季1,3(
), 王佳才2,3, 马永强2,3, 袁海斌2,3, 简路明2,3, 姜基灿2,3, 朱家骅1,3
收稿日期:2024-09-23
修回日期:2024-12-10
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
李季
作者简介:李季(1989—),男,博士,高级实验师,lijiscu@scu.edu.cn
基金资助:
Ji LI1,3(
), Jiacai WANG2,3, Yongqiang MA2,3, Haibin YUAN2,3, Luming JIAN2,3, Jican JIANG2,3, Jiahua ZHU1,3
Received:2024-09-23
Revised:2024-12-10
Online:2025-04-25
Published:2025-05-12
Contact:
Ji LI
摘要:
针对湿法磷酸萃取-浓缩和尾气洗涤氟逸出过程,建立了H2SiF6-H2O与H2SiF6-H3PO4-H2SO4-H2O体系热力学平衡下的氟元素气液分配比,模型预测误差在20%之内。基于热力学分析,降低尾气洗涤温度,可增加传质推动力,有利于提高氟吸收传质速率和产出高浓度的氟硅酸溶液,但冷凝水增多,加大了系统水平衡压力。在氟吸收循环回路串联无泵循环闪蒸浓缩氟硅酸的单元操作,设计并实施了7.5万吨P2O5/年WPA尾气减排与资源化利用项目,用低温、高浓度氟硅酸逆流吸收并冷却尾气低于323 K,使含氟尾气过饱和冷凝,既强化尾气氟化物吸收,又避免硅胶颗粒结块丧失流动性,使尾气氟含量≤2 mg/m3,尾气氟回收率≥99%,尾气总量减排20%以上,氟硅酸产品H2SiF6≥18%(质量),提供了一个湿法磷酸含氟尾气高效资源化利用的工程范例。
中图分类号:
李季, 王佳才, 马永强, 袁海斌, 简路明, 姜基灿, 朱家骅. 湿法磷酸含氟尾气高效资源化利用热力学分析与工程实践[J]. 化工学报, 2025, 76(4): 1484-1492.
Ji LI, Jiacai WANG, Yongqiang MA, Haibin YUAN, Luming JIAN, Jican JIANG, Jiahua ZHU. Thermodynamic analysis and engineering practice of high efficiently recycle of fluorine contained in tail gas from wet-process phosphoric acid plant[J]. CIESC Journal, 2025, 76(4): 1484-1492.
| 项目 | 原系统 | 新系统 |
|---|---|---|
| 氟硅酸产品浓度/%(质量) | ≤13 | ≥18 |
| 氟回收率/% | ≤70 | ≥99 |
| 循环洗液温度/K | 338~343 | 313~318 |
| 清理人数 | 25 | 0 |
| 尾气氟含量/(mg/m3) | 10 | ≤2 |
| 系统清理周期/d | 5 | 7 |
| 清理费用/(万元/年) | 24.88 | 0 |
| 新增产品收益/(万元/年) | — | 20.98 |
表1 7.5万吨P2O5/年湿法磷酸尾气减排与资源化利用项目经济性分析
Table 1 Economic analysis of 75000 t P2O5/a WPA tail gas emission reduction and utilization project
| 项目 | 原系统 | 新系统 |
|---|---|---|
| 氟硅酸产品浓度/%(质量) | ≤13 | ≥18 |
| 氟回收率/% | ≤70 | ≥99 |
| 循环洗液温度/K | 338~343 | 313~318 |
| 清理人数 | 25 | 0 |
| 尾气氟含量/(mg/m3) | 10 | ≤2 |
| 系统清理周期/d | 5 | 7 |
| 清理费用/(万元/年) | 24.88 | 0 |
| 新增产品收益/(万元/年) | — | 20.98 |
| 1 | Teng B, Mekdimu M D, Wang C, al et, Comprehensive review of modified clay minerals for phosphate management and future prospects[J]. Journal of Cleaner Production, 2024, 447: 141425. |
| 2 | 王喜恒, 孙文哲. 湿法磷酸过程氟回收技术研究进展[J]. 无机盐工业, 2020, 52(8):25-29. |
| Wang X H, Sun W Z. Research progress on fluorine recovery technology in wet process phosphoric acid[J]. Inorganic Chemicals Industry, 2020, 52(8):25-29. | |
| 3 | 翁艺斌, 李兴春, 吴百春, 等. 我国石油炼制工业水污染物排放标准变迁[J]. 环境保护科学, 2018, 44(2): 6-11, 74. |
| Weng Y B, Li X C, Wu B C, et al. Development of the standards for water pollution discharge from the petroleum refinery sector in China[J]. Environmental Protection Science, 2018, 44(2): 6-11, 74. | |
| 4 | 中国磷复肥工业协会. 磷复肥行业“十四五”发展思路浅析[J]. 磷肥与复肥, 2021, 36(1): 1-5. |
| China Phosphate and Compound Fertilizer Industry Association. Analysis on the development thinking of phosphate compound fertilizer industry in the 14th Five-year Plan[J]. Phosphate & Compound Fertilizer, 2021, 36(1): 1-5. | |
| 5 | 王励生, 廖华书, 刘巍, 等. 湿法磷酸脱氟及饲料磷酸氢钙装置工程开发[J]. 无机盐工业, 1996, 28(5): 1-5. |
| Wang L S, Liao H S, Liu W, et al. Defluorination of wet-process phosphoric acid and engineering development of feed calcium hydrogen phosphate device[J]. Inorganic Chemicals Industry, 1996, 28(5): 1-5. | |
| 6 | 曹骐, 张志业, 王辛龙. 磷化工副产氟硅酸的利用及无水氟化氢的生产研究进展[J]. 无机盐工业, 2010, 42(5): 1-4. |
| Cao Q, Zhang Z Y, Wang X L. Utilization of fluorosilicic acid by-produced from phosphorus chemical industry and research progress in anhydrous hydrogen fluoride[J]. Inorganic Chemicals Industry, 2010, 42(5): 1-4. | |
| 7 | 王莹, 方俊文, 李博. 2019年我国磷复肥行业运行情况及发展趋势[J]. 磷肥与复肥, 2020, 35(8): 1-8. |
| Wang Y, Fang J W, Li B. Production and developing trends of phosphate and compound fertilizer industry in China in 2019[J]. Phosphate & Compound Fertilizer, 2020, 35(8): 1-8. | |
| 8 | Zhang P. Comprehensive recovery and sustainable development of phosphate resources[J]. Procedia Engineering, 2014, 83: 37-51. |
| 9 | 王智娟, 韦昌桃. 湿法磷酸净化技术研究进展[J]. 化工矿物与加工, 2019, 48(10): 50-55. |
| Wang Z J, Wei C T. Progress on research of purification technology for wet-process phosphoric acid[J]. Industrial Minerals & Processing, 2019, 48(10): 50-55. | |
| 10 | Tavener S J, Clark J H. Chapter 5 fluorine: friend or foe? A green c h e m i s t ' s perspective[M]//Advances in Fluorine Science. Amsterdam: Elsevier, 2006: 177-202. |
| 11 | Hocking M B. Handbook of Chemical Technology and Pollution Control[M]. 3rd ed. San Diego: Academic, 2005: 289-320. |
| 12 | Public Health Service Agency for Toxic Substances and Disease Registry. Toxicological Profile for Fluorides, Hydrogen Fluoride, and Fluorine[M]. Atlanta: U.S. Department of Health and Human Services, 2003. |
| 13 | 国家环境保护局. 大气污染物综合排放标准: [S]. 北京: 中国标准出版社, 1997. |
| State Bureau of Environmental Protection of the People's Republic of China. Comprehensive emission standard of air pollutants: [S]. Beijing: Standards Press of China, 1997. | |
| 14 | 环境保护部, 国家质量监督检验检疫总局. 无机磷化学工业污染物排放标准: [S]. 北京: 中国环境科学出版社, 2015. |
| Ministry of Environmental Protection of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Emission standards of pollutants for inorganic chemical industry: [S]. Beijing: China Environmental Science Press, 2015. | |
| 15 | 张海燕, 杨劲, 明大增, 等. 湿法磷酸深度脱氟技术研究进展[J]. 化学工程师, 2014, 28(4): 42-45. |
| Zhang H Y, Yang J, Ming D Z, et al. Development in research on de-fluorination technology of wet phosphoric acid[J]. Chemical Engineer, 2014, 28(4): 42-45. | |
| 16 | 何宾宾. 饲料级湿法磷酸脱氟技术综述及发展思路[J]. 磷肥与复肥, 2020, 35(10): 28-30. |
| He B B. Review of defluorination technology of feed grade WPA and its development thinking[J]. Phosphate & Compound Fertilizer, 2020, 35(10): 28-30. | |
| 17 | 石通杉, 刘旭, 杨俊. 湿法磷酸净化技术研究现状及发展[J]. 磷肥与复肥, 2023, 38(6): 26-28, 52. |
| Shi T S, Liu X, Yang J. Research status and development of purification technology for wet-process phosphoric acid [J]. Phosphate & Compound Fertilizer, 2023, 38(6): 26-28, 52. | |
| 18 | Berka M, Bányai I. Surface complexation modeling of K+, N O 3 - , S O 4 2 - , Ca2+, F-, Co2+, and Cr3+ ion adsorption on silica gel[J]. Journal of Colloid and Interface Science, 2001, 233(1): 131-135. |
| 19 | Naskar M K. Preparation of colloidal hydrated alumina modified NaA zeolite derived from rice husk ash for effective removal of fluoride ions from water medium[J]. Journal of Asian Ceramic Societies, 2020, 8(2): 437-447. |
| 20 | Tian Z H, Gan Y Q. In situ synthesis of structural hierarchy flowerlike zeolite and its application for fluoride removal in aqueous solution[J]. Journal of Nanomaterials, 2019, 2019: 2932973. |
| 21 | Luchian C, Niculaua M, Cotea V, et al. Adsorption of phenolic compounds from wine on mesoporous MCM-41 molecular sieve[J]. Revista de Chime, 2011, 62(3): 287-292. |
| 22 | Zhang J C, Tian C T, Xu Y, et al. Effective removal of fluorine ions in phosphoric acid by silicate molecular sieve synthesized by hexafluorosilicic acid[J]. Separation and Purification Technology, 2023, 305: 122395. |
| 23 | Kijkowska R, Pawlowska-Kozinska D, Kowalski Z, et al. Wet-process phosphoric acid obtained from Kola apatite. Purification from sulphates, fluorine, and metals[J]. Separation and Purification Technology, 2002, 28(3):197-205. |
| 24 | Sirianni A F, Paillard G, Puddington I E. Separation of wet-process phosphoric acid[J]. The Canadian Journal of Chemical Engineering, 1969, 47(3):210-211. |
| 25 | 任兢. 湿法磷酸尾气洗涤系统改造[J]. 磷肥与复肥, 2014, 29(2):36-37. |
| Ren J. Transformation of tail gas washing system for WPA production [J]. Phosphate & Compound Fertilizer, 2014, 29(2):36-37. | |
| 26 | 杨林军, 张志炳, 张允湘, 等. 湿法磷酸过滤管道系统氟硅酸钾(钠)结垢沉积模型[J]. 化工学报, 2003, 54(10):1407-1412. |
| Yang L J, Zhang Z B, Zhang Y X, et al. Modeling of potassium (sodium) fluosilicate scale formation in wet-process phosphoric acid production[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(10): 1407-1412. | |
| 27 | 张海燕, 明大增, 吉晓玲, 等. 浅析湿法磷酸脱氟反应原理[J]. 无机盐工业, 2015, 47(1):9-12. |
| Zhang H Y, Ming D Z, Ji X L, et al. Analysis on de-fluorination reaction principle of wet process phosphoric acid [J]. Inorganic Chemicals Industry, 2015, 47(1):9-12. | |
| 28 | Akiyama T, Ando J. Constituents and properties of ammoniated slurry from wet-process phosphoric acid[J]. Bulletin of the Chemical Society of Japan, 1972, 45(9): 2915-2920. |
| 29 | 李志祥, 明大增. 磷肥行业含氟硅胶综合利用技术综述[J]. 硫磷设计与粉体工程, 2011(3): 41-45, 5. |
| Li Z X, Ming D Z. Overview of comprehensive utilization technology for fluorine-containing silica gel in phosphate fertilizer industry[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2011(3): 41-45, 5. | |
| 30 | 陈文兴, 张筑南, 蒋仁波, 等. 磷肥企业氟硅产物综合利用及清洁生产研究[J]. 无机盐工业, 2013, 45(8):52-54. |
| Chen W X, Zhang Z N, Jiang R B, et al. Silicon fluoride products comprehensive utilization and cleaner production of phosphate fertilizer enterprises [J]. Inorganic Chemicals Industry, 2013, 45(8):52-54. | |
| 31 | 陈冲, 李季, 朱家骅, 等. 湿法磷酸尾气封闭循环工艺与氟回收技术开发[J]. 磷肥与复肥, 2018, 33(1): 32-35. |
| Chen C, Li J, Zhu J H, et al. Development of tail gas close loop and fluorine recovery technology for WPA production[J]. Phosphate & Compound Fertilizer, 2018, 33(1): 32-35. | |
| 32 | Guendouzi M EI, Rifai A, Skafi M. Properties of fluoride in wet phosphoric acid processes: fluorosilicic acid in an aqueous solution of H2SiF6-H2O at temperatures ranging from 298.15 K to 353.15 K[J]. Fluid Phase Equilibria, 2015, 396(1):43-49. |
| 33 | 化学工业部建设协调司, 化工部硫酸和磷肥设计技术中心组织. 磷酸磷铵重钙技术与设计手册[M]. 北京: 化学工业出版社, 1997. |
| Department of Construction Coordination of Ministry of Chemical Industry, Organization of the Sulfuric Acid and Phosphate Fertilizer Design Technology Center of the Ministry of Chemical Industry. Technical and Design Manual of Ammonium Phosphate and Heavy Calcium and Phosphate[M]. Beijing: Chemical Industry Press, 1997. | |
| 34 | 罗显富, 李季, 朱家骅, 等. H2SiF6-H2O气液平衡体系中氟的分配比模型[J]. 磷肥与复肥, 2018, 33(3): 6-9. |
| Luo X F, Li J, Zhu J H, et al. Distribution coefficient model of fluorine in H2SiF6-H2O gas-liquid equilibrium system [J]. Phosphate & Compound Fertilizer, 2018, 33(3): 6-9. | |
| 35 | Grzmil B, Wronkowski J. Removal of phosphates and fluorides from industrial wastewater[J]. Desalination, 2006, 189: 261-268. |
| 36 | van der Sluis S, Schrijver A H M, Baak F P C, et al. Fluoride distribution coefficients in wet phosphoric acid processes [J]. Industrial & Engineering Chemistry Research, 1988, 27(3): 527-536. |
| 37 | Pitzer K S. Thermodynamics of aqueous electrolytes at various temperatures, pressures, and compositions[M]//ACS Symposium Series. Washington, D. C.: American Chemical Society, 1980: 451-466. |
| 38 | 朱家骅, 夏素兰, 陈洪杰, 等. 无含氟尾气排放的湿法磷酸工艺与氟硅酸加工方法: 106829899B[P]. 2019-03-05. |
| Zhu J H, Xia S L, Chen H J, et al. Wet process phosphoric acid process and fluorosilicic acid processing method without fluorine-containing tail gas emission: 106829899B[P]. 2019-03-05. |
| [1] | 蒋方涛, 钱刚, 周兴贵, 段学志, 张晶. 基于[bmim][BF4]相转移催化的氟代碳酸乙烯酯高效合成[J]. 化工学报, 2024, 75(4): 1543-1551. |
| [2] | 张文惠, 唐茹意, 崔希利, 邢华斌. 羧酸端基Y型全氟聚醚的氟谱解析及结构表征[J]. 化工学报, 2024, 75(4): 1718-1723. |
| [3] | 曾玉娇, 肖炘, 杨刚, 张意博, 郑光明, 李防, 汪凤玲. 基于机理与数据混合驱动的湿法磷酸生产过程代理建模与优化[J]. 化工学报, 2024, 75(3): 936-944. |
| [4] | 杨同, 王欢, 邓春. 六氟化铀及氟化物汽液相平衡数据预测及精馏过程模拟[J]. 化工学报, 2024, 75(2): 463-474. |
| [5] | 王璐遥, 张广勇, 于海鑫, 张轩诚, 黄岩, 赵玉潮. 聚全氟乙丙烯中空纤维复合膜的制备及其染料/无机盐分离性能研究[J]. 化工学报, 2024, 75(11): 4309-4319. |
| [6] | 贾海林, 曾锦祥, 潘荣锟, 潘仕利, 周凯旋. 无氟泡沫灭火剂真火实验与分子动力学模拟[J]. 化工学报, 2024, 75(10): 3825-3834. |
| [7] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
| [8] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
| [9] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
| [10] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
| [11] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
| [12] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
| [13] | 陈号, 田仪娟, 全学军, 蒋子文, 李纲. 铬铁矿在HCl-HF体系中的分解行为[J]. 化工学报, 2023, 74(3): 1161-1174. |
| [14] | 洪小东, 董轩, 林美金, 廖祖维, 任聪静, 杨遥, 蒋斌波, 王靖岱, 阳永荣. 图神经网络预测烃类工质的热力学性质[J]. 化工学报, 2023, 74(11): 4466-4474. |
| [15] | 唐茹意, 潘罕骞, 郑侠俊, 张广欣, 汪星平, 崔希利, 邢华斌. Z型全氟聚醚的结构表征[J]. 化工学报, 2023, 74(1): 479-486. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号