1 |
Zhang S, Chen W Y. China's energy transition pathway in a carbon neutral vision[J]. Engineering, 2022, 14: 64-76.
|
2 |
Lin Q Y, Zhang X, Wang T, et al. Technical perspective of carbon capture, utilization, and storage[J]. Engineering, 2022, 14: 27-32.
|
3 |
Geffroy C, Lilley D, Parez P S, et al. Techno-economic analysis of waste-heat conversion[J]. Joule, 2021, 5(12): 3080-3096.
|
4 |
Imran M, Pili R, Usman M, et al. Dynamic modeling and control strategies of organic Rankine cycle systems: methods and challenges[J]. Applied Energy, 2020, 276: 115537.
|
5 |
Bellos E, Tzivanidis C. Investigation of a hybrid ORC driven by waste heat and solar energy[J]. Energy Conversion and Management, 2018, 156: 427-439.
|
6 |
da Silva Morais P H, Lodi A, Aoki A C, et al. Energy, exergetic and economic analyses of a combined solar-biomass-ORC cooling cogeneration systems for a Brazilian small plant[J]. Renewable Energy, 2020, 157: 1131-1147.
|
7 |
Chitgar N, Hemmati A, Sadrzadeh M. A comparative performance analysis, working fluid selection, and machine learning optimization of ORC systems driven by geothermal energy[J]. Energy Conversion and Management, 2023, 286: 117072.
|
8 |
Nondy J, Gogoi T K. Exergoeconomic investigation and multi-objective optimization of different ORC configurations for waste heat recovery: a comparative study[J]. Energy Conversion and Management, 2021, 245: 114593.
|
9 |
Schwöbel J A H, Preißinger M, Brüggemann D, et al. High-throughput screening of working fluids for the organic Rankine cycle (ORC) based on conductor-like screening model for realistic solvation (COSMO-RS) and thermodynamic process simulations[J]. Industrial & Engineering Chemistry Research, 2017, 56(3): 788-798.
|
10 |
Dong X A, Liao Z W, Sun J Y, et al. Simultaneous optimization for organic Rankine cycle design and heat integration[J]. Industrial & Engineering Chemistry Research, 2020, 59(46): 20455-20471.
|
11 |
Dong X A, Liao Z W, Sun J Y, et al. Simultaneous optimization of a heat exchanger network and operating conditions of organic Rankine cycle[J]. Industrial & Engineering Chemistry Research, 2020, 59(25): 11596-11609.
|
12 |
王羽鹏, 梁俊伟, 罗向龙, 等. 基于神经网络的有机朗肯循环过程及循环性能计算方法[J]. 化工学报, 2019, 70(9): 3256-3266.
|
|
Wang Y P, Liang J W, Luo X L, et al. Novel prediction method of process and system performance for organic Rankine cycle based on neural network[J]. CIESC Journal, 2019, 70(9): 3256-3266.
|
13 |
李子航, 王占博, 苗政, 等. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495.
|
|
Li Z H, Wang Z B, Miao Z, et al. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle[J]. CIESC Journal, 2021, 72(9): 4487-4495.
|
14 |
Fouad W A, Vega L F. Next generation of low global warming potential refrigerants: thermodynamic properties molecular modeling[J]. AIChE Journal, 2018, 64(1): 250-262.
|
15 |
Nair V. HFO refrigerants: a review of present status and future prospects[J]. International Journal of Refrigeration, 2021, 122: 156-170.
|
16 |
龚正. 分子动力学模拟预测工业流体的热力学性质的方法研究[D]. 上海: 上海交通大学, 2019.
|
|
Gong Z. Study on the method of molecular dynamics simulation to predict the thermodynamic properties of industrial fluids[D]. Shanghai: Shanghai Jiao Tong University, 2019.
|
17 |
Xu Y H, Huang X, Li C P, et al. Predicting structure-dependent properties directly from the three dimensional molecular images via convolutional neural networks[J]. AIChE Journal, 2022, 68(8): e17721.
|
18 |
Walters W P, Barzilay R. Applications of deep learning in molecule generation and molecular property prediction[J]. Accounts of Chemical Research, 2021, 54(2): 263-270.
|
19 |
Zhang J, Wang Q, Su Y, et al. An accurate and interpretable deep learning model for environmental properties prediction using hybrid molecular representations[J]. AIChE Journal, 2022, 68(6): e17634.
|
20 |
Altintas C, Altundal O F, Keskin S, et al. Machine learning meets with metal organic frameworks for gas storage and separation[J]. Journal of Chemical Information and Modeling, 2021, 61(5): 2131-2146.
|
21 |
Moghadam P Z, Rogge S M J, Li A, et al. Structure-mechanical stability relations of metal-organic frameworks via machine learning[J]. Matter, 2019, 1(1): 219-234.
|
22 |
Wang S H, Cheng M, Luo L, et al. High-throughput screening of metal-organic frameworks for hydrogen purification[J]. Chemical Engineering Journal, 2023, 451: 138436.
|
23 |
Schweidtmann A M, Rittig J G, König A, et al. Graph neural networks for prediction of fuel ignition quality[J]. Energy & Fuels, 2020, 34(9): 11395-11407.
|
24 |
Liu R C, Liu R Z, Liu Y F, et al. Design of fuel molecules based on variational autoencoder[J]. Fuel, 2022, 316: 123426.
|
25 |
Alshehri A S, Tula A K, You F Q, et al. Next generation pure component property estimation models: with and without machine learning techniques[J]. AIChE Journal, 2022, 68(6): e17469.
|
26 |
Yan X, Lan T, Jia Q Z, et al. A norm indexes-based QSPR model for predicting the standard vaporization enthalpy and formation enthalpy of organic compounds[J]. Fluid Phase Equilibria, 2020, 507: 112437.
|
27 |
Aouichaoui A R N, Fan F, Abildskov J, et al. Application of interpretable group-embedded graph neural networks for pure compound properties[J]. Computers & Chemical Engineering, 2023, 176: 108291.
|
28 |
Wang Y Y, Wang J R, Cao Z L, et al. Molecular contrastive learning of representations via graph neural networks[J]. Nature Machine Intelligence, 2022, 4(3): 279-287.
|
29 |
Morris C, Ritzert M, Fey M, et al. Weisfeiler and leman go neural: higher-order graph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 4602-4609.
|
30 |
Su Y, Wang Z H, Jin S M, et al. An architecture of deep learning in QSPR modeling for the prediction of critical properties using molecular signatures[J]. AIChE Journal, 2019, 65(9): e16678.
|