• •
谭耀文1,2(), 姜攀星1,2, 杜青1,2, 余婉秋1,2, 温小飞3, 詹志刚1,2()
收稿日期:
2023-12-18
修回日期:
2024-01-14
出版日期:
2024-02-21
通讯作者:
詹志刚
作者简介:
谭耀文(1998—),男,硕士研究生,18271236764@163.com
基金资助:
Yaowen TAN1,2(), Panxing JIANG1,2, Qing DU1,2, Wanqiu YU1,2, Xiaofei WEN3, Zhigang ZHAN1,2()
Received:
2023-12-18
Revised:
2024-01-14
Online:
2024-02-21
Contact:
Zhigang ZHAN
摘要:
为研究长期稳定运行条件下,工作电压对质子交换膜燃料电池膜电极衰退状况的影响,建立了包含碳腐蚀、Pt氧化与溶解以及离聚物降解的PEMFC多物理场耦合模型进行数值模拟。研究结果表明:随着工作电压增加,阴极催化层中Pt溶解与碳腐蚀速率加快,500小时后Pt表面氧化的区域大幅增加,阴极催化层中团聚体半径与质子交换膜中磺酸基团浓度剧烈减小,衰退区域主要集中在阴极入口处且高电压下衰退程度急剧增加。电池在0.8 V下运行500小时后,阴极入口处阴极催化层与膜厚度显著减小,分别降低13.62%与35.30%;阴极催化层电化学活性面积和膜的离子电导率分别减小59.9%与6.9%,膜的当量质量增加7.4%,且上述指标前100小时内衰退剧烈,随后逐渐趋于平缓。结论可为膜电极材料设计与控制策略的优化提供参考。
中图分类号:
谭耀文, 姜攀星, 杜青, 余婉秋, 温小飞, 詹志刚. 工作电压对PEMFC膜电极衰退影响模拟研究[J]. 化工学报, DOI: 10.11949/0438-1157.20231344-yxj.
Yaowen TAN, Panxing JIANG, Qing DU, Wanqiu YU, Xiaofei WEN, Zhigang ZHAN. Numerical study of the effects of operating voltage on the degradation of membrane electrodes of PEMFC[J]. CIESC Journal, DOI: 10.11949/0438-1157.20231344-yxj.
参数名称 | 数值/ |
---|---|
电池总长/宽/高 | 60/2/2.407 |
流道深度 | 0.5 |
流道宽度 | 0.8 |
岸宽 | 0.6 |
阴/阳极GDL厚度 | 0.16 |
阴/阳极MPL厚度 | 0.03 |
阴/阳极CL厚度 | 0.009/0.006 |
质子交换膜厚度 | 0.012 |
表1 结构参数
Table 1 Structural parameters
参数名称 | 数值/ |
---|---|
电池总长/宽/高 | 60/2/2.407 |
流道深度 | 0.5 |
流道宽度 | 0.8 |
岸宽 | 0.6 |
阴/阳极GDL厚度 | 0.16 |
阴/阳极MPL厚度 | 0.03 |
阴/阳极CL厚度 | 0.009/0.006 |
质子交换膜厚度 | 0.012 |
参数名称 | 数值 | 单位 |
---|---|---|
温度 | 348.15 | K |
阴/阳极出口背压 | 150/150 | kPa |
阴/阳极进口加湿度 | 70%/50% | - |
阴/阳极化学计量比 | 2/2 | - |
表2 操作条件
Table 2 Operating conditions
参数名称 | 数值 | 单位 |
---|---|---|
温度 | 348.15 | K |
阴/阳极出口背压 | 150/150 | kPa |
阴/阳极进口加湿度 | 70%/50% | - |
阴/阳极化学计量比 | 2/2 | - |
参数名称 | 数值 | 单位 |
---|---|---|
GDL/MPL/CL接触角 | 130/140/120 | deg |
GDL/MPL/CL孔隙率 | 0.7/0.6/0.5 | - |
GDL/MPL/CL/PEM密度 | 2000/2000/1350/1980 | kgm-3 |
GDL/MPL/CL/PEM比热容 | 1000/1000/680/1090 | J(kg |
GDL/MPL/CL渗透率,厚度方向 | 6.5×10-12/3.4×10-12/2×10-15 | m2 |
GDL/MPL/CL渗透率,平面方向 | 1.9×10-12/3.4×10-12/2×10-15 | m2 |
GDL/MPL/CL/PEM电导率,厚度方向 | 358/358/13514/0 | Sm -1 |
GDL/MPL/CL/PEM电导率,平面方向 | 27500/358/13514/0 | Sm -1 |
GDL/MPL/CL/PEM热导率,厚度方向 | 0.83/0.83/2.74/0.2 | W(m |
GDL/MPL/CL/PEM热导率,平面方向 | 8.33/0.83/2.74/0.2 | W(m |
阴/阳极交换电流密度 | 900/5×108 | A·m-3 |
阴/阳极电荷传递系数 | 0.65/0.5 | - |
表3 物性参数[30]及电化学参数[20]
Table 3 Physical parameters and electrochemical parameters
参数名称 | 数值 | 单位 |
---|---|---|
GDL/MPL/CL接触角 | 130/140/120 | deg |
GDL/MPL/CL孔隙率 | 0.7/0.6/0.5 | - |
GDL/MPL/CL/PEM密度 | 2000/2000/1350/1980 | kgm-3 |
GDL/MPL/CL/PEM比热容 | 1000/1000/680/1090 | J(kg |
GDL/MPL/CL渗透率,厚度方向 | 6.5×10-12/3.4×10-12/2×10-15 | m2 |
GDL/MPL/CL渗透率,平面方向 | 1.9×10-12/3.4×10-12/2×10-15 | m2 |
GDL/MPL/CL/PEM电导率,厚度方向 | 358/358/13514/0 | Sm -1 |
GDL/MPL/CL/PEM电导率,平面方向 | 27500/358/13514/0 | Sm -1 |
GDL/MPL/CL/PEM热导率,厚度方向 | 0.83/0.83/2.74/0.2 | W(m |
GDL/MPL/CL/PEM热导率,平面方向 | 8.33/0.83/2.74/0.2 | W(m |
阴/阳极交换电流密度 | 900/5×108 | A·m-3 |
阴/阳极电荷传递系数 | 0.65/0.5 | - |
网格数量 | 电流密度/mAcm-2 | 电压/V | 计算时间/h | |
---|---|---|---|---|
Case1 | 196964 | 800 | 0.731275 | 5.1 |
Case2 | 261492 | 800 | 0.731949 | 7.3 |
Case3 | 307831 | 800 | 0.732615 | 8.6 |
Case4 | 363158 | 800 | 0.732826 | 10.4 |
Case5 | 431285 | 800 | 0.732910 | 12.8 |
表4 网格独立性检验
Table 4 Grid independence test
网格数量 | 电流密度/mAcm-2 | 电压/V | 计算时间/h | |
---|---|---|---|---|
Case1 | 196964 | 800 | 0.731275 | 5.1 |
Case2 | 261492 | 800 | 0.731949 | 7.3 |
Case3 | 307831 | 800 | 0.732615 | 8.6 |
Case4 | 363158 | 800 | 0.732826 | 10.4 |
Case5 | 431285 | 800 | 0.732910 | 12.8 |
图5 运行起始时刻阴极催化层中间平面 (a)碳腐蚀速率[mol/(m3s)] (b)Pt溶解速率[mol/(m2s)]
Fig. 5 The mid-plane of CCL at the starting moment of the run (a) Carbon corrosion rate (b) Dissolution rate of Pt
图8 运行500h后 (a)阴极催化层中团聚体的半径(nm) (b)阴极催化层厚度的减少率(%)
Fig. 8 After 500h of running (a) Agglomerate radius reduction in CCL (b) Ratio of thickness reduction in CCL
图11 运行500h后 (a)膜中间平面磺酸基团浓度(mol/m3) (b)膜厚度减少率(%)
Fig. 11 After 500h of running (a) Concentration of RfSO3- in mid-plane of PEM (b) PEM thickness reduction
1 | Meyer Q, Zeng Y C, Zhao C. In situ and operando characterization of proton exchange membrane fuel cells[J]. Advanced Materials, 2019, 31(40): e1901900. |
2 | 侯明, 邵志刚, 俞红梅, 等. 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1): 137-150. |
Hou M, Shao Z G, Yu H M, et al. Review of hot topics on hydrogen fuel cell in 2019[J]. Science & Technology Review, 2020, 38(1): 137-150. | |
3 | Nguyen H L, Han J, Nguyen X L, et al. Review of the durability of polymer electrolyte membrane fuel cell in long-term operation: main influencing parameters and testing protocols[J]. Energies, 2021, 14(13): 4048. |
4 | Okonkwo P C, Ige O O, Barhoumi E M, et al. Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: a review[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15850-15865. |
5 | Gittleman C, Coms F, Lai Y. Chapter 2–Membrane Durability: Physical And Chemical Degradation[M]// Boston; Academic Press. 2012: 15-88. |
6 | Hong K, Li S, Zhu K, et al. Effects of relative humidification on durability of membrane electrode assembly of proton exchange membrane fuel cells[J]. Journal of the Electrochemical Society, 2021, 168(6): 064507. |
7 | Chen H C, Zhao X, Zhang T, et al.. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review[J]. Energy Conversion & Management, 2019, 182: 282-298. |
8 | 王诚, 王树博, 张剑波, 等. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435. |
Wang C, Wang S B, Zhang J B, et al. The durability research on the proton exchange membrane fuel cell for automobile application[J]. Progress in Chemistry, 2015, 27(4): 424-435. | |
9 | Ren P, Pei P C, Li Y H, et al. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Progress in Energy and Combustion Science, 2020, 80: 100859. |
10 | Zhang Y L, Chen S G, Wang Y, et al. Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test[J]. Journal of Power Sources, 2015, 273: 62-69. |
11 | Han M, Shul Y G, Lee H, et al. Accelerated testing of polymer electrolyte membranes under open-circuit voltage conditions for durable proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(52): 30787-30791. |
12 | Franck-Lacaze L, Bonnet C, Choi E, et al. Ageing of PEMFC's due to operation at low current density: investigation of oxidative degradation[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10472-10481. |
13 | Kneer A, Wagner N, Sadeler C, et al. Effect of dwell time and scan rate during voltage cycling on catalyst degradation in PEM fuel cells[J]. Journal of the Electrochemical Society, 2018, 165(10): F805-F812. |
14 | Kneer A, Wagner N. A semi-empirical catalyst degradation model based on voltage cycling under automotive operating conditions in PEM fuel cells[J]. Journal of the Electrochemical Society, 2019, 166(2): F120-F127. |
15 | 罗马吉, 杨俊玮, 赵岩, 等. 不同衰退机理对PEMFC怠速工况性能衰退影响的模拟研究[J]. 太阳能学报, 2021, 42(3): 414-421. |
Luo M J, Yang J W, Zhao Y, et al. Simulation study on effect of different aging mechanisms on pemfc performance degradation under idling condition[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 414-421. | |
16 | Kundu S, Fowler M W, Simon L C, et al. Degradation analysis and modeling of reinforced catalyst coated membranes operated under OCV conditions[J]. Journal of Power Sources, 2008, 183(2): 619-628. |
17 | Moein-Jahromi M, Kermani M J. Three-dimensional multiphase simulation and multi-objective optimization of PEM fuel cells degradation under automotive cyclic loads[J]. Energy Conversion and Management, 2021, 231: 113837. |
18 | Cullen D A, Neyerlin K C, Ahluwalia R K, et al. New roads and challenges for fuel cells in heavy-duty transportation[J]. Nature Energy, 2021, 6: 462-474. |
19 | Shao Y Y, Yin G P, Gao Y Z. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell[J]. Journal of Power Sources, 2007, 171(2): 558-566. |
20 | Fink C, Karpenko-Jereb L, Ashton S. Advanced CFD analysis of an air-cooled PEM fuel cell stack predicting the loss of performance with time[J]. Fuel Cells, 2016, 16(4): 490-503. |
21 | Pandy A, Yang Z W, Gummalla M, et al. A carbon corrosion model to evaluate the effect of steady state and transient operation of a polymer electrolyte membrane fuel cell[J]. Journal of the Electrochemical Society, 2013, 160(9): F972-F979. |
22 | MacAuley N, Papadias D D, Fairweather J, et al. Carbon corrosion in PEM fuel cells and the development of accelerated stress tests[J]. Journal of the Electrochemical Society, 2018, 165(6): F3148-F3160. |
23 | Bi W, Fuller T F. Modeling of PEM fuel cell Pt/C catalyst degradation[J]. Journal of Power Sources, 2008, 178(1): 188-196. |
24 | Heyd D V, Harrington D A. Platinum oxide growth kinetics for cyclic voltammetry[J]. Journal of Electroanalytical Chemistry, 1992, 335(1/2): 19-31. |
25 | Darling R M, Meyers J P. Mathematical model of platinum movement in PEM fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(1): A242. |
26 | Kregar A, Tavčar G, Kravos A, et al. Predictive system-level modeling framework for transient operation and cathode platinum degradation of high temperature proton exchange membrane fuel cells[J]. Applied Energy, 2020, 263: 114547. |
27 | Wong K H, Kjeang E. Mitigation of chemical membrane degradation in fuel cells: understanding the effect of cell voltage and iron ion redox cycle[J]. ChemSusChem, 2015, 8(6): 1072-1082. |
28 | Wong K H, Kjeang E. Macroscopic In-situ modeling of chemical membrane degradation in polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2014, 161(9): F823-F832. |
29 | Singh R, Sui P C, Wong K H, et al. Modeling the effect of chemical membrane degradation on PEMFC performance[J]. Journal of the Electrochemical Society, 2018, 165(6): F3328-F3336. |
30 | Fink C, Gößling S, Karpenko-Jereb L, et al. CFD simulation of an industrial PEM fuel cell with local degradation effects[J]. Fuel Cells, 2020, 20(4): 431-452. |
31 | Chen H, Zhan Z G, Jiang P X, et al. Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA[J]. Applied Energy, 2022, 310: 118556. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[6] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[13] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[14] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[15] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 324
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||