• •
李坤1(), 黄锐1, 丛君1, 马海涛1, 常龙娇3, 罗绍华1,2(
)
收稿日期:
2024-09-02
修回日期:
2024-10-31
出版日期:
2024-10-12
通讯作者:
罗绍华
作者简介:
李坤(1999—),女,硕士研究生,3504586743@qq.com
基金资助:
Kun LI1(), Rui HUANG1, Jun CONG1, Haitao MA1, Longjiao CHANG3, Shaohua LUO1,2(
)
Received:
2024-09-02
Revised:
2024-10-31
Online:
2024-10-12
Contact:
Shaohua LUO
摘要:
当前以锂离子电池为主的二次电池已经步入主流。而LiNi1-x-yCoxMnyO2(NCM)材料在锂离子电池之中也具有相当大的商业市场,是一种具备极大应用价值的正极材料。根据镍的含量不同具备不同的性能。镍比例的增加能使得比容量提高,但也会导致热稳定性下降,因此对于高镍材料需要对制备工艺有更高的要求来确保其性能。相对于Li[Ni0.8Co0.1Mn0.1]O2(NCM811),Li[Ni0.6Co0.2Mn0.2]O2(NCM622)在具备较高比容量的同时热稳性更优秀。对纯相NCM622材料使用水热法进行制备,通过控制煅烧温度和煅烧时间来得出最佳制备方案。所制备的NCM622材料在最佳条件下能够达到最高191.3 mAh·g-1的放电比容量,充放电循环也能有最高88.74%的容量保持率。
中图分类号:
李坤, 黄锐, 丛君, 马海涛, 常龙娇, 罗绍华. NCM622正极材料结构形态和储锂特性的同步演变[J]. 化工学报, DOI: 10.11949/0438-1157.20240983.
Kun LI, Rui HUANG, Jun CONG, Haitao MA, Longjiao CHANG, Shaohua LUO. Simultaneous evolution of structural morphology and lithium storage properties in NCM622 cathode material[J]. CIESC Journal, DOI: 10.11949/0438-1157.20240983.
图2 (a)不同煅烧温度制备NCM622的XRD;(b~d)不同煅烧温度制备NCM622的SEM
Fig.2 (a) XRD of NCM622 prepared at different calcination temperatures; (b~d) SEM of NCM622 prepared at different calcination temperatures
图3 不同煅烧温度制备NCM622的XRD精修: (a) 800 ℃, (b) 850 ℃ and (c) 900 ℃;(d)不同煅烧温度制备NCM622的形成能
Fig.3 Rietveld XRD of NCM622 prepared at different calcination temperatures: (a) 800 ℃, (b) 850 ℃ (c) 900 ℃; (d) formation energy of NCM622 prepared at different calcination temperatures
图4 (a)不同煅烧温度制备NCM622的首次充放电曲线;(b)长循环性能;(c)倍率性能;(d)电化学阻抗
Fig.4 (a) first charge-discharge curve; (b) long cycle performance; (c) rate performance and (d) electrochemical impedance of NCM622 prepared at different calcination temperatures
图7 不同煅烧温度制备NCM622的XRD精修: (a) 6 h, (b) 8 h and (c) 10 h;(d)不同煅烧时间制备NCM622的形成能
Fig.7 Rietveld XRD of NCM622 prepared at different calcination temperatures: (a) 6 h, (b) 8 h and (c) 10 h; (d) formation energy of NCM622 prepared at different calcination time
图8 (a)不同煅烧时间制备NCM622的首次充放电曲线;(b)长循环性能;(c)倍率性能;(d)电化学阻抗
Fig.8 (a) first charge-discharge curve; (b) long cycle performance; (c) rate performance and (d) electrochemical impedance of NCM622 prepared at different calcination time
样品 | 比容量性能 | 文献 |
---|---|---|
NCM622 | 191.3 mAh·g-1 | 本文 |
Li1.2Mn0.56Ni0.11Co0.13O2 | 151.4 mAh·g-1 | [ |
LiNi0.6Mn0.2Co0.2O2 | 176.3 mAh·g-1 | [ |
LiNi0.6Mn0.2Co0.2O2 | 136 mAh·g-1 | [ |
NMC622 | 176.6 mAh·g-1 | [ |
Ni-rich ternary cathodes | 191.1 mAh·g-1 | [ |
NCM523 | 150 mAh·g-1 | [ |
LiNi0.8Co0.1Mn0.1O2 | 186.1 mAh·g-1 | [ |
表1 不同NCM622的电性能比较
Table 1 Comparison of electrical properties of different NCM622
样品 | 比容量性能 | 文献 |
---|---|---|
NCM622 | 191.3 mAh·g-1 | 本文 |
Li1.2Mn0.56Ni0.11Co0.13O2 | 151.4 mAh·g-1 | [ |
LiNi0.6Mn0.2Co0.2O2 | 176.3 mAh·g-1 | [ |
LiNi0.6Mn0.2Co0.2O2 | 136 mAh·g-1 | [ |
NMC622 | 176.6 mAh·g-1 | [ |
Ni-rich ternary cathodes | 191.1 mAh·g-1 | [ |
NCM523 | 150 mAh·g-1 | [ |
LiNi0.8Co0.1Mn0.1O2 | 186.1 mAh·g-1 | [ |
1 | Liu Z S, Li L J, Chen J, et al. Effects of chelating agents on electrochemical properties of Na0.9Ni0.45Mn0.55O2 cathode materials[J]. Journal of Alloys and Compounds, 2021, 855: 157485.[LinkOut] |
2 | Kunduraci M, Buluttekin R, Mutlu R N, et al. Synergistic coupling of high capacity Li1.2Mn0.54Ni0.13Co0.13O2 and high voltage LiMn1.6Ni0.4O4 lithium-ion battery cathodes[J]. Journal of Electronic Materials, 2022, 51(2): 769-777.[LinkOut] |
3 | Zheng Z Y, Zhou J, Zhu Y S. Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning[J]. Chemical Society Reviews, 2024, 53(6): 3134-3166.[LinkOut] |
4 | Tolganbek N, Yerkinbekova Y, Kalybekkyzy S, et al. Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: a review[J]. Journal of Alloys and Compounds, 2021, 882: 160774.[LinkOut] |
5 | Cao W P, Yan J T, Zhang P, et al. Cerium-doped lithium-rich Li1.2Mn0.56Ni0.11Co0.13O2 as cathode with high performance for lithium-ion batteries[J]. Ionics, 2022, 28(10): 4515-4526.[LinkOut] |
6 | Jiang P, Van Fan Y, Klemeš J J. Impacts of COVID-19 on energy demand and consumption: challenges, lessons and emerging opportunities[J]. Applied Energy, 2021, 285: 116441.[LinkOut] |
7 | Li X R, Chen X, Bai Q, et al. From atomistic modeling to materials design: computation-driven material development in lithium-ion batteries[J]. Science China Chemistry, 2024, 67(1): 276-290.[LinkOut] |
8 | Na S, Park K. Hybrid dual conductor on Ni-rich NCM for superior electrochemical performance in Lithium-ion batteries[J]. International Journal of Energy Research, 2022, 46(6): 7389-7398.[LinkOut] |
9 | Jia Z H, Liu Y, Li H M, et al. In-situ polymerized PEO-based solid electrolytes contribute better Li metal batteries: challenges, strategies, and perspectives[J]. Journal of Energy Chemistry, 2024, 92: 548-571.[LinkOut] |
10 | Huang Y H, Mai L Q, Xu H H, et al. Interdisciplinary research of materials and energy in honor of Nobel laureate John B. Goodenough[J]. Interdisciplinary Materials, 2022, 1(3): 321-322.[LinkOut] |
11 | Chan K H, Liu H T, Azimi G. Synthesis of a nickel-rich LiNi0.6Mn0.2Co0.2O2 cathode material utilizing the supercritical carbonation process[J]. Industrial & Engineering Chemistry Research, 2023, 62(10): 4271-4280.[LinkOut] |
12 | Ling J, Karuppiah C, Krishnan S G, et al. Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review[J]. Energy & Fuels, 2021, 35(13): 10428-10450.[LinkOut] |
13 | Jiang X, Qin L, Yu H F, et al. All-dry synthesis of single-crystalline LiNi0.6Mn0.2Co0.2O2 cathodes for high-energy and long-life Li-ion batteries[J]. Industrial & Engineering Chemistry Research, 2024, 63(23): 10291-10298.[LinkOut] |
14 | Soloy A, Flahaut D, Ledeuil J B, et al. Unraveling the morphological dependency of the LiNi0.6Mn0.2Co0.2O2 layered oxide reactivity in Li-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(7): 8669-8685.[LinkOut] |
15 | Woodley C P, Cooper R A, Bartlett B M. Cu doping increases capacity retention in LiNi0.6Mn0.2Co0.2O2 (NMC622) by altering the potential of the Ni-based redox couple and inhibiting particle pulverization[J]. ACS Applied Energy Materials, 2024, 7(18): 7875-7884.[LinkOut] |
16 | Azad N, Arabi H. Improving electrochemical performance of NMC622 cathode by coating with Cr2O3 nanopowders and modified current collector[J]. Journal of Materials Engineering and Performance, 2023, 32(12): 5603-5609.[LinkOut] |
17 | Nitou M V M, Pang Y S, Wan Z, et al. LiFePO4 as a dual-functional coating for separators in lithium-ion batteries: a new strategy for improving capacity and safety[J]. Journal of Energy Chemistry, 2023, 86: 490-498.[LinkOut] |
18 | Cronk A, Chen Y T, Deysher G, et al. Overcoming the interfacial challenges of LiFePO4 in inorganic all-solid-state batteries[J]. ACS Energy Letters, 2023, 8(1): 827-835.[LinkOut] |
19 | Sun Y B, Chang C K, Zheng J N. Doping effects on ternary cathode materials for lithium-ion batteries: a review[J]. Chemphyschem, 2024, 25(17): e202300966.[PubMed] |
20 | Ma R, Zhao Z K, Fu J L, et al. Tuning cobalt-free nickel-rich layered LiNi0.9Mn0.1O2 cathode material for lithium-ion batteries[J]. ChemElectroChem, 2020, 7(12): 2637-2642.[LinkOut] |
21 | Chu C T, Chang L M, Yin D M, et al. Large-sized nickel–cobalt–manganese composite oxide agglomerate anode material for long-life-span lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(12): 13811-13818.[LinkOut] |
22 | Liu X R, Wang X L, Yue B, et al. Preparation of hierarchical LiNi x Co y Mn z O2 from solvothermal[Ni x Co y Mn z ](OH)2 via regulating the ratio of Ni, Co, and Mn and its excellent properties for lithium-ion battery cathode[J]. Journal of the Chinese Chemical Society, 2020, 67(11): 2062-2070.[LinkOut] |
23 | Qin L, Yu H F, Jiang X, et al. All-dry solid-phase synthesis of single-crystalline Ni-rich ternary cathodes for lithium-ion batteries[J]. Science China Materials, 2024, 67(2): 650-657.[LinkOut] |
24 | Wang H, Wu Z J, Wang M M, et al. "Acid + oxidant" treatment enables selective extraction of lithium from spent NCM523 positive electrode[J]. Batteries, 2024, 10(6): 179.[LinkOut] |
25 | Guo X B, Song C C, Liu D C, et al. Effect of precursor structure transformation on synthesis and performance of LiNi0.5Co0.2Mn0.3O2 cathode material[J]. Solid State Sciences, 2022, 131: 106954.[LinkOut] |
26 | Hu Q, He Y F, Ren D S, et al. Targeted masking enables stable cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6V[J]. Nano Energy, 2022, 96: 107123.[LinkOut] |
27 | Xiong Y K, Chang S H, Li Y J, et al. Enhancing surface and internal structural stability of LiNi0.8Co0.1Mn0.1O2 by yttrium phosphate dual effects[J]. Journal of Alloys and Compounds, 2022, 894: 162155.[LinkOut] |
28 | Reissig F, Lange M A, Haneke L, et al. Synergistic effects of surface coating and bulk doping in Ni-rich lithium nickel cobalt manganese oxide cathode materials for high-energy lithium ion batteries[J]. ChemSusChem, 2022, 15(4): e202102220.[PubMed] |
29 | Akhilash M, Salini P S, John B, et al. Surface modification on nickel rich cathode materials for lithium-ion cells: a mini review[J]. Chemical Record, 2023, 23(11): e202300132.[PubMed] |
30 | Soloy A, Flahaut D, Foix D, et al. Reactivity at the electrode–electrolyte interfaces in Li-ion and gel electrolyte lithium batteries for LiNi0.6Mn0.2Co0.2O2 with different particle sizes[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 28792-28806.[LinkOut] |
31 | You L Z, Li G X, Huang B, et al. Surface-reinforced NCM811 with enhanced electrochemical performance for Li-ion batteries[J]. Journal of Alloys and Compounds, 2022, 918: 165488.[LinkOut] |
[1] | 王舒英, 左涛, 石志伟, 范小明, 张卫新. 阳离子交换树脂基介孔石墨化碳合成与储钠性能[J]. 化工学报, 2024, 75(9): 3338-3347. |
[2] | 彭丹, 卢俊杰, 倪文静, 杨媛, 汪靖伦. 高电压钴酸锂电池电解液研究进展[J]. 化工学报, 2024, 75(9): 3028-3040. |
[3] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[4] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[5] | 江洋, 彭长宏, 陈伟, 周豪, 马忠彬, 李洪博, 邱在容, 张国鹏, 周康根. 废旧磷酸铁锂粉料综合回收中试研究[J]. 化工学报, 2024, 75(6): 2353-2361. |
[6] | 裴欣哲, 孙朱行, 林钰翔, 张朝阳, 钱勇, 吕兴才. 电催化分解液氨阳极材料的研究[J]. 化工学报, 2024, 75(5): 1843-1854. |
[7] | 吴希, 孙博, 刘银东, 齐传磊, 陈凯毅, 王路海, 许崇, 李永峰. 钠离子电池沥青基碳负极材料制备技术研究进展[J]. 化工学报, 2024, 75(4): 1270-1283. |
[8] | 孙铭泽, 黄鹤来, 牛志强. 铂基氧还原催化剂:从单晶电极到拓展表面纳米材料[J]. 化工学报, 2024, 75(4): 1256-1269. |
[9] | 李云璇, 刘新悦, 陈熙, 刘文, 周明月, 蓝兴英. 基于固液氧化还原靶向反应的能量存储技术:材料、器件及动力学[J]. 化工学报, 2024, 75(4): 1222-1240. |
[10] | 贾旭东, 杨博龙, 程前, 李雪丽, 向中华. 分步负载金属法制备铁钴双金属位点高效氧还原电催化剂[J]. 化工学报, 2024, 75(4): 1578-1593. |
[11] | 严孝清, 赵瑛, 张宇哲, 欧鸿辉, 黄起中, 胡华贵, 杨贵东. 五重孪晶铜纳米线@聚吡咯制备及其电催化硝酸盐还原制氨[J]. 化工学报, 2024, 75(4): 1519-1532. |
[12] | 李昂, 赵振宇, 李洪, 高鑫. 微波诱导高分散Pd/FeP催化剂构筑及其电催化性能研究[J]. 化工学报, 2024, 75(4): 1594-1606. |
[13] | 潘娜, 田昌, 怀兰坤, 刘玉玉, 张芬芬, 高晓梅, 刘伟, 闫良国, 赵艳侠. 聚合铝钛基絮凝剂的合成与应用[J]. 化工学报, 2024, 75(3): 1009-1018. |
[14] | 郭邦军, 贾理男, 张希. 全固态硫化物锂电池中NCM正极及其界面研究[J]. 化工学报, 2024, 75(3): 743-759. |
[15] | 吴吉昊, 陈涛, 刘思宇, 刘梦柯, 杨卷. 双功能活化制备沥青基硬炭用于钠离子电池负极[J]. 化工学报, 2024, 75(3): 1019-1027. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||