| [1] |
Chen X B, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7): 2891-2959.
|
| [2] |
陈朝华, 刘长河. 钛白粉生产及应用技术[M]. 北京: 化学工业出版社, 2006: 3-6.
|
|
Chen Z H, Liu C H. Production and Application Technology of Titanium Dioxide[M]. Beijing: Chemical Industry Press, 2006: 3-6.
|
| [3] |
黄俊, 李荣兴, 田林, 等. 氯化法钛白生产工艺中四氯化钛氧化微观反应机理研究进展[J]. 化工进展, 2018, 37(3): 1054-1061.
|
|
Huang J, Li R X, Tian L, et al. Research progress of oxidation mechanism in the chloride process for titanium dioxide production[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1054-1061.
|
| [4] |
刘飞生, 谢刚, 于站良, 等. 氯化法生产钛白工艺的研究进展[J]. 材料导报, 2014, 28(15): 113-118.
|
|
Liu F S, Xie G, Yu Z L, et al. Research and development of titania powders by chlorination technology[J]. Materials Review, 2014, 28(15): 113-118.
|
| [5] |
Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chemical Reviews, 1995, 95(1): 49-68.
|
| [6] |
李园园, 贾志杰. 纳米金红石型TiO2的制备研究[J]. 化工进展, 2005, 24(10): 1155-1157.
|
|
Li Y Y, Jia Z J. Preparation and characterization of nanocrystalline rutile TiO2 [J]. Chemical Industry and Engineering Progress, 2005, 24(10): 1155-1157.
|
| [7] |
毛倩. 燃烧中纳米颗粒物生成机理的分子动力学研究[D]. 北京: 清华大学, 2018.
|
|
Mao Q. Atomistic insights into mechanisms of formation of nanoparticles in flame[D]. Beijing: Tsinghua University, 2018.
|
| [8] |
Roth P. Particle synthesis in flames[J]. Proceedings of the Combustion Institute, 2007, 31(2): 1773-1788.
|
| [9] |
Strobel R, Pratsinis S E. Flame aerosol synthesis of smart nanostructured materials[J]. Journal of Materials Chemistry, 2007, 17(45): 4743-4756.
|
| [10] |
Waser O, Büchel R, Hintennach A, et al. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries[J]. Journal of Aerosol Science, 2011, 42(10): 657-667.
|
| [11] |
宗毅晨, 宋佩东, 刘晨阳, 等. 火焰合成中前驱物-颗粒演化过程的时间尺度研究[J]. 工程热物理学报, 2016, 37(10): 2248-2252.
|
|
Zong Y C, Song P D, Liu C Y, et al. Time scale analysis on precursor-particle transformation in flame aerosol synthesis[J]. Journal of Engineering Thermophysics, 2016, 37(10): 2248-2252.
|
| [12] |
卫吉丽. 火焰合成纳米氧化物颗粒材料的过程调控与机理研究[D]. 北京: 清华大学, 2021.
|
|
Wei J L. Process control and mechanism study of flame synthesis of metal-oxide nanoparticles[D]. Beijing: Tsinghua University, 2021.
|
| [13] |
陈柄岐. 纳米颗粒气相制备过程中凝并、烧结行为的数值模拟研究[D]. 南京: 东南大学, 2023.
|
|
Chen B Q. Numerical study on coagulation and sintering of nanoparticle evolution during aerosol synthesis[D]. Nanjing: Southeast University, 2023.
|
| [14] |
Nakaso K, Okuyama K, Shimada M, et al. Effect of reaction temperature on CVD-made TiO2 primary particle diameter[J]. Chemical Engineering Science, 2003, 58(15): 3327-3335.
|
| [15] |
Sung Y, Raman V, Fox R O. Large-eddy-simulation-based multiscale modeling of TiO2 nanoparticle synthesis in a turbulent flame reactor using detailed nucleation chemistry[J]. Chemical Engineering Science, 2011, 66(19): 4370-4381.
|
| [16] |
Boje A, Akroyd J, Sutcliffe S, et al. Detailed population balance modelling of TiO2 synthesis in an industrial reactor[J]. Chemical Engineering Science, 2017, 164: 219-231.
|
| [17] |
Wang H. Formation of nascent soot and other condensed-phase materials in flames[J]. Proceedings of the Combustion Institute, 2011, 33(1): 41-67
|
| [18] |
张易阳. 基于滞止火焰合成的高温场纳米颗粒动力学研究[D]. 北京: 清华大学, 2013.
|
|
Zhang Y Y. Dynamics of nanoparticles in stagnation flames[D]. Beijing: Tsinghua University, 2013.
|
| [19] |
Bockhorn H, Danna A, Sarofim A F, et al. Combustion Generated Flame Carbonaceous Particles[M]. Villa Orlandi, Anacapri: Karlsruhe University Press, 2007.
|
| [20] |
周峨, 王志, 温建康, 等. TiCl4高温气相氧化过程的动力学研究[J]. 稀有金属, 2007, 31(5): 656-660.
|
|
Zhou E, Wang Z, Wen J K, et al. Oxidation kinetics of titanium tetrachloride in vapor phase[J]. Chinese Journal of Rare Metals, 2007, 31(5): 656-660.
|
| [21] |
Pratsinis S E. Flame aerosol synthesis of ceramic powders[J]. Progress in Energy and Combustion Science, 1998, 24(3): 197-219.
|
| [22] |
杨绪壮, 袁章福, 王志, 等. 氯化法钛白氧化反应器的设计技术[J]. 化工设计, 2004, 14(1): 5-10.
|
|
Yang X Z, Yuan Z F, Wang Z, et al. Design and enlargement of oxidation reactor for the production of titania with chlorination method[J]. Chemical Engineering Design, 2004, 14(1): 5-10.
|
| [23] |
Buddhiraju V S, Runkana V. Simulation of nanoparticle synthesis in an aerosol flame reactor using a coupled flame dynamics-monodisperse population balance model[J]. Journal of Aerosol Science, 2012, 43(1): 1-13.
|
| [24] |
Fokin V M, Zanotto E D. Surface and volume nucleation and growth in TiO2-cordierite glasses[J]. Journal of Non-Crystalline Solids, 1999, 246(1/2): 115-127.
|
| [25] |
Smith R D, Bennett R A, Bowker M. Measurement of the surface-growth kinetics of reduced TiO2(110) during reoxidation using time-resolved scanning tunneling microscopy[J]. Physical Review B, 2002, 66(3): 035409.
|
| [26] |
Akroyd J, Smith A J, Shirley R, et al. A coupled CFD-population balance approach for nanoparticle synthesis in turbulent reacting flows[J]. Chemical Engineering Science, 2011, 66(17): 3792-3805.
|
| [27] |
Buesser B, Gröhn A J, Pratsinis S E. Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2011, 115(22): 11030-11035.
|
| [28] |
Eggersdorfer M L, Pratsinis S E. Restructuring of aggregates and their primary particle size distribution during sintering[J]. AIChE Journal, 2013, 59(4): 1118-1126.
|
| [29] |
Buesser B, Pratsinis S E. Design of nanomaterial synthesis by aerosol processes[J]. Annual Review of Chemical and Biomolecular Engineering, 2012, 3: 103-127.
|
| [30] |
Eggersdorfer M L, Pratsinis S E. The structure of agglomerates consisting of polydisperse particles[J]. Aerosol Science and Technology, 2012, 46(3): 347-353.
|
| [31] |
Kelesidis G A, Goudeli E, Pratsinis S E. Flame synthesis of functional nanostructured materials and devices: surface growth and aggregation[J]. Proceedings of the Combustion Institute, 2017, 36(1): 29-50.
|
| [32] |
Ren Y H, Zhang Y Y, Li S Q, et al. Doping mechanism of vanadia/titania nanoparticles in flame synthesis by a novel optical spectroscopy technique[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2283-2289.
|
| [33] |
Eggersdorfer M L, Goudeli E. Structure and dynamics of fractal-like particles made by agglomeration and sintering [J]. AIChE Journal, 2020, 66(12): e17099.
|
| [34] |
Ranjan P, Selvam E, Jayaganthan R, et al. Thermodynamic modelling and characterisation of TiO2 nanoparticles produced by wire explosion process[J]. Materials Today: Proceedings, 2018, 5(9): 17304-17311.
|
| [35] |
Tsantilis S, Pratsinis S E. Soft- and hard-agglomerate aerosols made at high temperatures[J]. Langmuir, 2004, 20(14): 5933-5939.
|
| [36] |
Einar, Kusters, Pratsinis S E, et al. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering[J]. Aerosol Science and Technology, 1993, 19(4): 514-526.
|
| [37] |
Heine M C, Pratsinis S E. Agglomerate TiO2 aerosol dynamics at high concentrations[J]. Particle & Particle Systems Characterization, 2007, 24(1): 56-65.
|
| [38] |
Kobata A, Kusakabe K, Morooka S. Growth and transformation of TiO2 crystallites in aerosol reactor[J]. AIChE Journal, 1991, 37(3): 347-359.
|
| [39] |
Seto T, Shimada M, Okuyama K. Evaluation of sintering of nanometer-sized titania using aerosol method[J]. Aerosol Science and Technology, 1995, 23(2): 183-200.
|