化工学报 ›› 2024, Vol. 75 ›› Issue (6): 2233-2242.DOI: 10.11949/0438-1157.20240179
收稿日期:
2024-02-18
修回日期:
2024-03-07
出版日期:
2024-06-25
发布日期:
2024-07-03
通讯作者:
张威
作者简介:
黄斌(1982—),男,博士,教授,2022052@cqust.edu.cn
基金资助:
Bin HUANG1(), Shengjie FENG2, Cheng FU1, Wei ZHANG1(
)
Received:
2024-02-18
Revised:
2024-03-07
Online:
2024-06-25
Published:
2024-07-03
Contact:
Wei ZHANG
摘要:
液滴撞击单丝现象在石油与天然气处理过程中广泛存在,研究液滴撞击单丝的铺展特性对于提高化工设备的热质传递效率有重要意义。基于VOF方法建立液滴撞击单丝的数值模型,系统研究了初始速度、初始直径、撞击偏心距、撞击角度对液滴铺展因子的影响。结果表明,增加初始速度能加快铺展因子增长速率并延长其最大铺展因子的保持时间。减小液滴的初始直径显示出更高的铺展因子;缩短撞击偏心距有助于液滴的更充分铺展,控制在0.2R以内时铺展效果最佳;减小撞击角度也可促进液滴更充分地铺展,其中铺展因子曲线在不同撞击角度下存在一个铺展转换点。此外液膜中心与两侧压差驱动液滴快速铺展,直至达到最大铺展长度后停止。研究结果可为含有丝网填料的化工设备的优化设计提供理论参考。
中图分类号:
黄斌, 丰生杰, 傅程, 张威. 液滴撞击单丝铺展特性的数值研究[J]. 化工学报, 2024, 75(6): 2233-2242.
Bin HUANG, Shengjie FENG, Cheng FU, Wei ZHANG. Numerical study on spreading characteristics of droplet impact on single fiber[J]. CIESC Journal, 2024, 75(6): 2233-2242.
17 | 苏梦军. 丝网填料表面微纳结构构筑及其对液体流动和气液传质的影响[D]. 北京: 北京化工大学, 2020. |
Su M J. Construction of micro/nano-structure on the surface of wire mesh packing and its influence on the liquid flow behaviors and mass transfer performance[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
18 | Liu Z H, Li Y B, Su M J, et al. Dispersion phenomena of liquid droplet impacting on the single fiber with different wettabilities[J]. Chemical Engineering Science, 2022, 248: 117169. |
19 | Xie C X, Shi J, Luo Y, et al. Mesoscale simulation investigation of droplet impacting behaviors on cylindrical surfaces[J]. Chemical Engineering Science, 2023, 277: 118848. |
20 | Piroird K, Clanet C, Lorenceau É, et al. Drops impacting inclined fibers[J]. Journal of Colloid and Interface Science, 2009, 334(1): 70-74. |
21 | Wang C, Wu X, Zhang H, et al. A many-body dissipative particle dynamics study of eccentric droplets impacting inclined fiber[J]. Physics of Fluids, 2021, 33(4): 042001. |
22 | 范瑶, 王宏, 朱恂, 等. 壁面曲率及过冷度对液滴铺展特性的影响[J].化工学报, 2016, 67(7): 2709-2717. |
Fan Y, Wang H, Zhu X, et al. Effect of curvature and undercooling degree of surface on behavior of droplet spreading[J]. CIESC Journal, 2016, 67(7): 2709-2717. | |
23 | Wang Y L. Numerical study of a droplet impact on cylindrical objects: towards the anti-icing property of power transmission lines[J]. Applied Surface Science, 2020, 516: 146155. |
24 | Wang C L, Wang Z B, Sun Z Q, et al. Molecular dynamics simulation of single droplet behavior on the windward side of a fiber filter during coalescence[J]. Chemical Engineering Science, 2022, 264: 118150. |
25 | Luo J, Wu S Y, Xiao L, et al. The maximum spreading lengths in circumferential and axial directions when droplets impact on cylindrical surfaces[J]. International Journal of Multiphase Flow, 2021, 143: 103774. |
26 | 徐文韬. 单液滴撞击细纤维的动力学特性研究[D]. 南京: 南京理工大学, 2020. |
Xu W T. Study on the dynamic characteristics of a single droplet impacting a fine fiber[D]. Nanjing: Nanjing University of Science and Technology, 2020. | |
27 | Qian L, Zhou Z, Zhu C, et al. A numerical simulation of a droplet impacting a small superhydrophobic cylinder eccentrically[J]. Physics of Fluids, 2023, 35(6): 062125. |
28 | Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
29 | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
30 | Xie P, Lu X S, Ding H B, et al. A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed[J]. Chemical Engineering Science, 2019, 199: 528-545. |
31 | Xiao L, Gou G M, Wu S Y, et al. Effect of incident direction and droplet position on dynamic and heat transfer behaviors of droplet impacting on super-hydrophilic cylindrical surface[J]. Annals of Nuclear Energy, 2023, 187: 109785. |
32 | Chen Y D, Yang Y X, Shi X X, et al. Experimental and numerical simulation of dynamic characteristics on single drop impacting hydrophilic wires[J]. Case Studies in Thermal Engineering, 2023, 42: 102760. |
1 | 谢剑, 何孝天, 程愉,等. 丝网表面液滴撞击行为及气液分离器设计优化[J]. 工程热物理学报, 2016, 37(6): 1230-1236. |
Xie J, He X T, Cheng Y, et al. Behavior of a droplet impacting on mesh screen and optimal design of the gas-liquid separators[J]. Journal of Engineering Thermophysics, 2016, 37(6): 1230-1236. | |
2 | 孙嘉祺, 郭斌, 侯晓松. 新型填料喷雾塔强化吸收甲醇废气的应用[J]. 化学工程, 2020, 48(7): 33-38. |
Sun J Q, Guo B, Hou X S. Application of new packed spray tower to intensify absorption of methanol waste gas[J]. Chemical Engineering (China), 2020, 48(7): 33-38. | |
3 | 郭达, 祁贵生, 刘有智, 等. 错流旋转填料床的质、热同传性能及传热机理研究[J]. 化工学报, 2021, 72(11): 5543-5551. |
Guo D, Qi G S, Liu Y Z, et al. Research on mass and heat synchronous performance and heat transfer mechanism of cross-flow rotating packed bed[J]. CIESC Journal, 2021, 72(11): 5543-5551. | |
4 | Chen W C, You X G, Liu P, et al. Enhanced regeneration of triethylene glycol solution by rotating packed bed for offshore natural gas dehydration process: experimental and modeling study[J]. Chemical Engineering and Processing-Process Intensification, 2021, 168: 108562. |
5 | 时国华, 何林珅, 赵玺灵, 等. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745. |
Shi G H, He L S, Zhao X L, et al. Study of removal characteristics of particulate matters within flue gas by spray tower for waste-heat recovery[J]. CIESC Journal, 2023, 74(4): 1735-1745. | |
6 | Pahlavan M, Shahsavand A, Panahi M. Design and simulation of rotating packed beds for an industrial acid gas enrichment process[J]. Fuel, 2024, 361: 130696. |
7 | Surmi A, Shariff A M, Lock S S M. Modeling of nitrogen removal from natural gas in rotating packed bed using artificial neural networks[J]. Molecules, 2023, 28(14): 5333. |
8 | 春江. 超亲水表面液膜快速铺展及其强化机理的研究[D]. 大连: 大连理工大学, 2022. |
Chun J. Enhancing mechanism of liquid film fast spreading on superhydrophilic surfaces[D]. Dalian: Dalian University of Technology, 2022. | |
9 | 郭镇瑶, 张卫正, 靳爽, 等. 柴油液滴撞击热壁面的动态行为特性[J]. 工程热物理学报, 2022, 43(10): 2782-2789. |
Guo Z Y, Zhang W Z, Jin S, et al. Dynamic behavior characteristics of diesel droplets impacting a hot wall[J]. Journal of Engineering Thermophysics, 2022, 43(10): 2782-2789. | |
10 | 刘海龙, 沈学峰, 王睿, 等. 纳米流体液滴撞击壁面铺展动力学特性研究[J]. 力学学报, 2018, 50(5): 1024-1031. |
Liu H L, Shen X F, Wang R, et al. Study on spreading characteristics of nanofluids droplet impinging on solid surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1024-1031 | |
11 | Hung L S, Yao S C. Experimental investigation of the impaction of water droplets on cylindrical objects[J]. International Journal of Multiphase Flow, 1999, 25(8): 1545-1559. |
12 | 李江南. 基于OpenFOAM液滴撞击不锈钢单丝的数值模拟研究[D]. 北京: 北京化工大学, 2022. |
Li J N. Numerical simulation study of droplets impacting stainless steel fiber based on OpenFOAM [D]. Beijing: Beijing University of Chemical Technology, 2022. | |
13 | Xiao L, Pan R Z, Wu S Y, et al. Dynamic behavior and heat transfer characteristics of a droplet impacting on the micro corrugated tube[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122625. |
14 | Yin S, Huang Y, Li H, et al. Compound droplet impact on a thin hydrophobic cylinder[J]. Langmuir, 2023, 39(41): 14758-14763. |
15 | Tang Y Y, Su M J, Chu G W, et al. Impact phenomena of liquid droplet passing through stainless steel wire mesh units[J]. Chemical Engineering Science, 2019, 198: 144-154. |
16 | Liu X H, Wang K M, Fang Y Q, et al. Study of the surface wettability effect on dynamic characteristics of droplet impacting a tube with different curvature ratios[J]. Experimental Thermal and Fluid Science, 2020, 115: 110060. |
[1] | 卢飞, 鲁波娜, 许光文. 气固微型流化床反应分析仪的理想流型判据分析[J]. 化工学报, 2024, 75(6): 2201-2213. |
[2] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[3] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[4] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[5] | 李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815. |
[6] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[7] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[8] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[9] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
[10] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
[11] | 徐百平, 梁瑞凤, 喻慧文, 吴桂群, 肖书平. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866. |
[12] | 屠楠, 刘晓群, 王驰宇, 方嘉宾. 连续进出料鼓泡流化床停留时间分布的相似准则研究[J]. 化工学报, 2024, 75(2): 543-552. |
[13] | 宋仕容, 刘宏臣, 米晓天, 许超, 杨梅, 尧超群. 同轴微通道内管结构对液滴生成的影响规律研究[J]. 化工学报, 2024, 75(2): 566-574. |
[14] | 赵碧丹, 代伊杨, 王军武, 张永民. CFD-DEM-IBM方法探究流化床倾斜挡板内构件受力特性[J]. 化工学报, 2024, 75(1): 255-267. |
[15] | 王俊男, 何呈祥, 王忠东, 朱春英, 马友光, 付涛涛. T型微混合器内均相混合的数值模拟[J]. 化工学报, 2024, 75(1): 242-254. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 498
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||