• •
黄娜1(
), 钟豫1, 蒋云龙2, 吴明婷3,4(
), 李洪伟5
收稿日期:2025-01-03
修回日期:2025-06-10
出版日期:2025-07-14
通讯作者:
吴明婷
作者简介:黄娜(1987—),女,博士,讲师,hn20162662@163.com
基金资助:
Na HUANG1(
), Yu ZHONG1, Yunlong JIANG2, Mingting WU3,4(
), Hongwei LI5
Received:2025-01-03
Revised:2025-06-10
Online:2025-07-14
Contact:
Mingting WU
摘要:
各类对流换热设备都必然伴随有振动现象,特别是换热工质包含复杂化学反应过程时,亟待探明其多场耦合机理。基于正癸烷裂解总包反应模型,对0、0.5、1和2 mm振幅下振动通道内超临界正癸烷裂解流动换热过程开展数值研究。结果显示,通道振动使流体产生强烈的纵向涡旋,且振幅越高Se越大,流动阻力随之显著提高。不同振幅下,裂解反应均发生在L/D>100区,在120<L/D<140区达到裂解反应速率峰值。L/D>140区正癸烷裂解率沿流向波动分布,且振幅越大裂解率越高。正癸烷裂解吸热反应对热流场的扰动起始于边界层,随着振幅提高,通道内速度边界层厚度减小、温度边界层和物性边界层厚度增大。进入缓冲层后,振幅不同引起的差异逐渐扩大,进而影响主流区的质量、动量和能量输运。综合分析不同振幅下通道的热沉与流动阻力,提出振动通道的综合换热性能较静止通道下降2.90~29.02%。
中图分类号:
黄娜, 钟豫, 蒋云龙, 吴明婷, 李洪伟. 不同振幅正弦振动通道内超临界正癸烷热裂解对流换热特性分析[J]. 化工学报, DOI: 10.11949/0438-1157.20250008.
Na HUANG, Yu ZHONG, Yunlong JIANG, Mingting WU, Hongwei LI. Analysis of thermal cracking convective heat transfer characteristics of supercritical n-decane in sinusoidal vibration channels with different amplitudes[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250008.
| L/D=60 | L/D=140 | L/D=160 | L/D=180 | L/D=210 | |
|---|---|---|---|---|---|
| A=0.5 mm | ![]() | ![]() | ![]() | ![]() | ![]() |
| A=1.0 mm | ![]() | ![]() | ![]() | ![]() | ![]() |
| A=2.0 mm | ![]() | ![]() | ![]() | ![]() | ![]() |
图14 不同工况下通道横截面内流线分布
Fig.14 Streamline distribution in cross section of tube under different vibration amplitude
| L/D=60 | L/D=140 | L/D=160 | L/D=180 | L/D=210 | |
|---|---|---|---|---|---|
| A=0.5 mm | ![]() | ![]() | ![]() | ![]() | ![]() |
| A=1.0 mm | ![]() | ![]() | ![]() | ![]() | ![]() |
| A=2.0 mm | ![]() | ![]() | ![]() | ![]() | ![]() |
| 振幅 | 0.5 mm | 1 mm | 2 mm | 4 mm |
|---|---|---|---|---|
| Nuv/Nus | 0.894 | 0.942 | 0.855 | 0.721 |
| 相对变化 | —— | +5.37% | -9.24% | -15.67% |
| fv/fs | 1.264 | 1.617 | 2.368 | 3.980 |
| 相对变化 | —— | +27.93% | +46.44% | +68.02% |
| η | 0.827 | 0.803 | 0.641 | 0.455 |
| 相对变化 | —— | -2.90% | -20.17% | -29.02% |
表1 不同振幅下综合流动换热性能比较
Table 1 Comparison of comprehensive flow heat transfer performance under different vibration amplitude
| 振幅 | 0.5 mm | 1 mm | 2 mm | 4 mm |
|---|---|---|---|---|
| Nuv/Nus | 0.894 | 0.942 | 0.855 | 0.721 |
| 相对变化 | —— | +5.37% | -9.24% | -15.67% |
| fv/fs | 1.264 | 1.617 | 2.368 | 3.980 |
| 相对变化 | —— | +27.93% | +46.44% | +68.02% |
| η | 0.827 | 0.803 | 0.641 | 0.455 |
| 相对变化 | —— | -2.90% | -20.17% | -29.02% |
| [1] | 郭茜里, 吴建钊, 王伯福, 等. 振动驱动热对流研究进展[J]. 上海大学学报(自然科学版), 2022, 28(5): 841-856. |
| Guo X L, Wu J Z.Wang B F,et al. Overview of recent developments in thermal vibrational convection[J]. Journal of Shanghai University (Natural Science Edition), 2022, 28(5): 841-856. | |
| [2] | Guo X Q, Wang B F, Wu J Z, et al. Turbulent vertical convection under vertical vibration[J]. Physics of Fluids, 2022, 34(5): 055106. |
| [3] | Zheng Y, Chen J Y, Shang Y, et al. Numerical Analysis of the Influence of Wall Vibration on Heat Transfer with Liquid Hydrogen Boiling flow in a Horizontal Tube[J]. International Journal of Hydrogen Energy, 2017, 42: 30804-30812. |
| [4] | Zhang W Y, Yang W W, Jiao Y H, et al. Numerical study of periodical wall vibration effects on the heat transfer and fluid flow of internal turbulent flow[J]. International Journal of Thermal Sciences, 2022, 173: 107367. |
| [5] | Liu W J, Yang Z, Zhang B, et al. Experimental study on the effects of mechanical vibration on the heat transfer characteristics of tubular laminar flow[J]. International Journal of Heat and Mass Transfer, 2017, 115: 169-179. |
| [6] | Tian S, Barigou M. An improved vibration technique for enhancing temperature uniformity and heat transfer in viscous fluid flow[J]. Chemical Engineering Science, 2015, 123: 609-619. |
| [7] | Mohammed A M, Kapan S, Sen M, et al. Effect of vibration on heat transfer and pressure drop in a heat exchanger with turbulator[J]. Case Studies in Thermal Engineering, 2021, 28: 10168. |
| [8] | Wang B F, Zhou Q, Sun C. Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement[J]. Science Advances, 2020, 6(21): eaaz8239. |
| [9] | Huang D, Li W. Heat Transfer deterioration of aviation kerosene flowing in mini tubes at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2017, 111(1): 266-278. |
| [10] | Seung Kim Jae, Song Hyun Seo, Lee Minsul, et al. Optimal design of regenerative cooling channels for a ram/scramjet dual-mode aircraft using conjugate heat transfer analysis[J]. Aerospace Science and Technology, 2025, 159: 109978. |
| [11] | 昝浩. 外部振动条件下再生冷却系统不稳定流动换热研究[D]. 哈尔滨, 哈尔滨工业大学, 2020. |
| Zan H. Research on unsteady flow and heat transfer characteristics for regenerative cooling system under external vibration condition[D]. Harbin, Harbin Institute of Technology, 2020. | |
| [12] | Zuo Y, Huang H R, Fu Y C, et al. Vibration effects on heat transfer characteristics of supercritical pressure hydrocarbon fuel in transition and turbulent states[J]. Applied Thermal Engineering, 2023, 219: 119617. |
| [13] | Zhou X Y, Li X, Zhang S L, et al. Heat transfer simulation considering coupling between the regenerative cooling and supersonic combustion under different solid thermal conductivities[J]. Energy, 2025, 330: 136787. |
| [14] | Gao C, Xu W J, Zhu X N, et al. Enhanced regenerative cooling performance with conformal TPMS channels[J]. Energy, 2025, 322: 135530. |
| [15] | 黄娜, 蒋云龙, 王东涵, 等. 通道振动频率对超临界正癸烷裂解流动换热影响的数值研究[J]. 化工学报, 2025, 76(1): 173-183. |
| Huang N, Jiang Y L, Wang D H, et al. Numerical study of influence of channel vibration frequency on flow and heat transfer of supercritical n-decane with pyrolysis reaction[J]. Chemical Industry and Engineering Society of China Journal, 2025, 76(1): 173-183. | |
| [16] | 刘小勇, 王明福, 刘建文, 等. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(05): 226-252. |
| Liu X Y, Wang M F, Liu J W, et al. Review and prospect of research on scramjet[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(05): 226-252. | |
| [17] | 章思龙, 秦江, 周伟星, 等. 高超声速推进再生冷却研究综述[J]. 推进技术, 2018, 39(10): 2177-2190. |
| Zhang S L, Qin J, Zhou W X, et al. Review on regenerative cooling technology of hypersonic propulsion[J]. Journal of Propulsion Technology, 2018, 39(10): 2177-2190. | |
| [18] | Ward T A, Ervin J S, Shafer L, et al. Pressure effects on flowing mildly-cracked n-decane[J]. Journal of Propulsion and Power, 2005, 21(2): 344-355. |
| [19] | Ward T A, Ervin J S, Striebich R C, et al. Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J]. Journal of Propulsion & Power, 2004, 20(3): 394-402. |
| [20] | 徐帅, 冯宇, 张德明, 等. 超临界航空燃料RP-3裂解反应过程换热关联式模型研究[J]. 工程热物理学报, 2023, 44(8): 2258-2266. |
| Xu S, Feng Y, Zhang D M, et al. Heat transfer correlation model of pyrolytic supercritical aviation kerosene RP-3[J]. Journal of Engineering Thermophysics, 2023, 44(8): 2258-2266. | |
| [21] | 姚通, 钟北京. 正癸烷热解的小规模化学动力学机理模型[J]. 物理化学学报, 2013, 29(7): 1385-1395. |
| Yao T, Zhong B J. Small-Scale Chemical Kinetic Mechanism Models for Pyrolysis of n-Decane[J]. Acta Physico-Chimica Sinica. 2013, 29 (7), 1385-1395. | |
| [22] | 裴晓晨. 能效评价用混合物热物性参数的简化计算方法[D]. 华北电力大学(北京), 2023. |
| Pei X C. Simplified calculation method for thermal property parameters of mixtures for energy efficiency evaluation[D]. North China Electric Power University(Beijing), 2023. | |
| [23] | 张兆顺, 崔桂香. 流体力学(第3版) [M]. 北京: 清华大学出版社, 2015. |
| Zhang Z S, Cui G X. Fluid Mechanics (The third edition) [M]. Beijing: Tsinghua University Press, 2015. | |
| [24] | 杨世铭, 陶文铨. 传热学(第4版) [M]. 北京: 高等教育出版社, 2006. |
| Yang S M, Tao W Q. Heat Transfer (The forth edition) [M]. Beijing: Higher Education Press, 2006. | |
| [25] | 高金海, 马艳红, 洪杰, 等. 高超声速飞行器冲压燃烧室随机振动响应分析[J]. 北京航空航天大学学报, 2008, 34(8): 981-985. |
| Gao J H, Ma Y H, Hong J, et al. Random vibration response analysis of hypersonic flight vehicle ramjet combustor chamber structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(8): 981-985. | |
| [26] | 张云峰. 高速气流作用下冲压发动机进气道壁板结构振动特性研究[D]. 哈尔滨工业大学, 2007. |
| Zhang Y F. Study on vibration characteristic of ramjet inlet affected by high speed fluid flows[D]. Harbin Institute of Technology, 2007. | |
| [27] | 赵珵, 郭晓亮, 姜培学, 等. 基于机器学习的竖直管内超临界压力CO2湍流换热替代模型研究[J]. 工程热物理学报, 2021, 42(05): 1244-1250. |
| Zhao C, Guo X L, Jiang P X, et al. Surrogate model of supercritical pressure CO2 turbulent heat transfer in vertical tubes based on machine learning[J]. Journal of Engineering Thermophysics, 2021, 42(05): 1244-1250. | |
| [28] | 王凯越, 王海鸥, 罗坤, 等. 壁面边界层附近高温圆柱绕流的直接数值模拟[J]. 工程热物理学报, 2024, 45(6): 1757-1762. |
| Wang K Y, Wang H O, Luo K, et al. Direct numerical simulation of flow around a high-temperature cylinder near a wall boundary layer[J]. Journal of Engineering Thermophysics, 2024, 45(6): 1757-1762. | |
| [29] | 尹应德, 农雅善, 李远羽, 等.扭曲管同轴套管换热器强化传热和流阻特性[J]. 化工学报, 2024, 75(10): 3528-3535. |
| Yin Y D, Nong Y S, Li Y Y, et al. Twisted tube coaxial casing heat exchanger strengthens the heat transfer and flow resistance characteristics[J]. CIESC Journal, 2024, 75(10): 3528-3535. | |
| [30] | 王俊博, 谢攀, 刘志春, 等. 最小㶲损优化方法在椭圆换热管内的应用[J]. 化工学报, 2016, 67(S1): 307-311 |
| Wang J B, Xie P, Liu Z C, et al. Application of Energy Destruction Minimization in Convective Heat Transfer Optimization for Elliptical Tube[J]. CIESC Journal, 2016, 67(S1): 307-311. |
| [1] | 郭松源, 周晓庆, 缪五兵, 汪彬, 耑锐, 曹庆泰, 陈成成, 杨光, 吴静怡. 火箭上升段含多孔板液氧贮箱增压输运数值研究[J]. 化工学报, 2025, 76(S1): 62-74. |
| [2] | 黄博, 黄灏, 王文, 贺隆坤. 薄膜型LNG船液货舱温度场计算分析[J]. 化工学报, 2025, 76(S1): 195-204. |
| [3] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [4] | 孙浩然, 吴成云, 王艳蒙, 孙静楠, 胡仞与, 段钟弟. 热对流影响下液滴蒸发特性模型与实验研究[J]. 化工学报, 2025, 76(S1): 123-132. |
| [5] | 王富玉, 周晅毅. 结合非定常伴随方程和遗传算法的化工区反演[J]. 化工学报, 2025, 76(6): 3104-3114. |
| [6] | 张亿韵, 陈恒志, 李洋, 慕长安, 王泉海. 湍流对双组分颗粒流化床气体径向扩散的影响[J]. 化工学报, 2025, 76(6): 2559-2568. |
| [7] | 谷德银, 杨豪, 李昌树, 刘作华. 分形穿流桨搅拌槽内假塑性流体的混合行为[J]. 化工学报, 2025, 76(6): 2569-2579. |
| [8] | 牛宏斌, 邱丽, 杨景轩, 张忠林, 郝晓刚, 赵忠凯, 阿布里提, 官国清. 筒体直径对旋风分离器性能的影响及其流场机制[J]. 化工学报, 2025, 76(5): 2367-2376. |
| [9] | 吴罗长, 杨泽宇, 颜建国, 朱旭涛, 陈阳, 王子辰. 微小方形通道内近超临界压力二氧化碳流动换热特性实验研究[J]. 化工学报, 2025, 76(4): 1583-1594. |
| [10] | 齐聪, 岳林菲. 交织网状小通道热沉的传热特性[J]. 化工学报, 2025, 76(4): 1534-1544. |
| [11] | 徐东亮, 赵彬彬, 孙逸玫, 刘婷婷, 刘筱然, 陈明功. 基于修正多孔介质模型的RPB模拟与流场特性研究[J]. 化工学报, 2025, 76(4): 1569-1582. |
| [12] | 姚国家, 王志, 苏昂, 冯东阁, 唐宏, 孙灵芳. 空气系数对煤粉预热解燃烧特性的影响分析[J]. 化工学报, 2025, 76(3): 1243-1252. |
| [13] | 谢楠楠, 陈和, 叶光华, 束忠明, 傅送保, 周兴贵. 气液搅拌釜多层桨叶相互作用及组合优化[J]. 化工学报, 2025, 76(2): 564-575. |
| [14] | 彭子林, 周蕾, 邓庆航, 叶光华, 周兴贵. 包含偏硅酸影响的3D NAND磷酸湿法刻蚀动力学[J]. 化工学报, 2025, 76(2): 645-653. |
| [15] | 党法璐, 孙志国, 高照, 王刚, 陈政宇, 张霖宙, 连竞存, 刘美佳, 张忠东, 刘超伟. 原油一步法催化裂解制低碳烯烃:实验和反应路径研究[J]. 化工学报, 2025, 76(2): 667-685. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号