化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4351-4368.DOI: 10.11949/0438-1157.20250104
收稿日期:2025-02-04
修回日期:2025-03-23
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
周光正
作者简介:王学重(1963—),男,博士,教授,wangxuezhong@bipt.edu.cn
基金资助:
Guangzheng ZHOU(
), Zihan ZHONG, Yanqun HUANG, Xuezhong WANG(
)
Received:2025-02-04
Revised:2025-03-23
Online:2025-09-25
Published:2025-10-23
Contact:
Guangzheng ZHOU
摘要:
结晶是物质分离与纯化的重要技术,目前主要采用离线分析的方法监测结晶过程参数,存在滞后性、消耗人力等弊端。基于过程分析技术(process analytical technology,PAT)的在线监测对于结晶生产工艺的优化与控制具有重要意义,可以充分提高生产效率与产品质量。原位成像技术能直观地反映结晶状态,图像分析算法提供的定量信息可用于研究结晶动力学等机理。虽然原位图像分析极具挑战性,但近些年以深度学习为代表的人工智能技术显著提升了预测精度。在简要介绍结晶领域各种常用PAT技术的基础上,重点综述了基于原位成像技术的相关研究进展,侧重于图像分析方法及其揭示的结晶行为与机理。最后,展望了原位成像技术对实现结晶过程智能监测的一些未来发展方向。
中图分类号:
周光正, 钟子翰, 黄彦群, 王学重. 基于原位成像与图像分析技术的结晶过程智能监测[J]. 化工学报, 2025, 76(9): 4351-4368.
Guangzheng ZHOU, Zihan ZHONG, Yanqun HUANG, Xuezhong WANG. Intelligent monitoring of crystallization processes based on in situ imaging and image analysis[J]. CIESC Journal, 2025, 76(9): 4351-4368.
| 视觉任务 | 功能 | 数据标签 | 代表算法 |
|---|---|---|---|
| 图像分类 | 将图像分到预定义类别中的某一类 | 说明图像所属的类别;工作量少 | ResNet[ Vision Transformer[ |
| 目标检测 | 识别所有目标并确定它们的类别与位置 | 用方框标注目标的四个顶点;工作量适中 | Faster R-CNN[ YOLO v3[ |
| 实例分割 | 确定目标个体的具体像素点 | 标注目标个体的边界像素点;工作量大 | Mask R-CNN[ YOLACT[ |
| 语义分割 | 像素级别的分类(不区分同类目标个体) | 标注类别区域的边界像素点;工作量大 | U-Net[ SegNet[ |
表1 深度学习代表性任务的比较
Table 1 Comparison of representative tasks for deep learning
| 视觉任务 | 功能 | 数据标签 | 代表算法 |
|---|---|---|---|
| 图像分类 | 将图像分到预定义类别中的某一类 | 说明图像所属的类别;工作量少 | ResNet[ Vision Transformer[ |
| 目标检测 | 识别所有目标并确定它们的类别与位置 | 用方框标注目标的四个顶点;工作量适中 | Faster R-CNN[ YOLO v3[ |
| 实例分割 | 确定目标个体的具体像素点 | 标注目标个体的边界像素点;工作量大 | Mask R-CNN[ YOLACT[ |
| 语义分割 | 像素级别的分类(不区分同类目标个体) | 标注类别区域的边界像素点;工作量大 | U-Net[ SegNet[ |
| 内容 | 研究方向 | 瓶颈问题 |
|---|---|---|
| 原位成像 | 复杂结晶环境成像;高时空分辨率成像 | 复杂环境下的高质量成像;光学显微镜的分辨率限制 |
| 图像分析方法 | 基于图像大数据的结晶机理研究;更高精度的图像分析算法;图像标注需求较低的算法;轻量级算法;与其他PAT技术的协同分析 | 图像分析模型的泛化性能;兼顾模型的高精度与实时性;兼顾模型的高精度与数据标注工作量;多模态数据融合策略 |
| 结晶控制 | 基于图像的在线闭环控制;多模态协同控制 | 准确的结晶过程模型;兼顾控制策略的实时性与精度 |
| 三维成像 | 基于三维成像的结晶机理研究;高分辨率三维成像;高浓度悬浮液成像的三维重构;复杂工业环境的三维成像设备;复杂高分辨率重构的实时性 | 通用性强的三维图像重构算法;动态过程的三维实时追踪算法 |
| 其他领域 | 其他多相流类型的成像研究,包括气固、液液、气液等 | 图像分析模型的适用性与高精度 |
表2 结晶过程原位成像的未来研究方向
Table 2 Future directions for in situ imaging of crystallization processes
| 内容 | 研究方向 | 瓶颈问题 |
|---|---|---|
| 原位成像 | 复杂结晶环境成像;高时空分辨率成像 | 复杂环境下的高质量成像;光学显微镜的分辨率限制 |
| 图像分析方法 | 基于图像大数据的结晶机理研究;更高精度的图像分析算法;图像标注需求较低的算法;轻量级算法;与其他PAT技术的协同分析 | 图像分析模型的泛化性能;兼顾模型的高精度与实时性;兼顾模型的高精度与数据标注工作量;多模态数据融合策略 |
| 结晶控制 | 基于图像的在线闭环控制;多模态协同控制 | 准确的结晶过程模型;兼顾控制策略的实时性与精度 |
| 三维成像 | 基于三维成像的结晶机理研究;高分辨率三维成像;高浓度悬浮液成像的三维重构;复杂工业环境的三维成像设备;复杂高分辨率重构的实时性 | 通用性强的三维图像重构算法;动态过程的三维实时追踪算法 |
| 其他领域 | 其他多相流类型的成像研究,包括气固、液液、气液等 | 图像分析模型的适用性与高精度 |
| [1] | Cote A, Erdemir D, Girard K P, et al. Perspectives on the current state, challenges, and opportunities in pharmaceutical crystallization process development[J]. Crystal Growth & Design, 2020, 20(12): 7568-7581. |
| [2] | Jia S Z, Wan X X, Yao T, et al. Separation performance and agglomeration behavior analysis of solution crystallization in food engineering[J]. Food Chemistry, 2023, 419: 136051. |
| [3] | 黄炎, 孙海龙, 孟子超, 等. 溶析结晶在医药领域的研究进展[J]. 化工进展, 2019, 38(5): 2380-2388. |
| Huang Y, Sun H L, Meng Z C, et al. Progress in antisolvent crystallization in pharmaceutical field[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2380-2388. | |
| [4] | Pu S Y, Hadinoto K. Continuous crystallization as a downstream processing step of pharmaceutical proteins: a review[J]. Chemical Engineering Research and Design, 2020, 160: 89-104. |
| [5] | Zhou H Y, Zhou G Z, Wang X Z. Multi-objective optimization of protein cooling crystallization with morphological population balance models[J]. Journal of Crystal Growth, 2022, 588: 126664. |
| [6] | Zhang D J, Xu S J, Du S C, et al. Progress of pharmaceutical continuous crystallization[J]. Engineering, 2017, 3(3): 354-364. |
| [7] | Orehek J, Teslić D, Likozar B. Continuous crystallization processes in pharmaceutical manufacturing: a review[J]. Organic Process Research & Development, 2021, 25(1): 16-42. |
| [8] | 赵绍磊, 王耀国, 张腾, 等. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2): 459-474. |
| Zhao S L, Wang Y G, Zhang T, et al. Advanced process control of pharmaceutical crystallization[J]. CIESC Journal, 2020, 71(2): 459-474. | |
| [9] | Food and Drug Administration. Guidance for industry: PAT—a framework for innovative pharmaceutical development, manufacturing and quality assurance[R]. Maryland: FDA, 2004. |
| [10] | Grangeia H B, Silva C, Simões S P, et al. Quality by design in pharmaceutical manufacturing: a systematic review of current status, challenges and future perspectives[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 147: 19-37. |
| [11] | Simon L L, Pataki H, Marosi G, et al. Assessment of recent process analytical technology (PAT) trends: a multiauthor review[J]. Organic Process Research & Development, 2015, 19(1): 3-62. |
| [12] | 张妍, 程景才, 杨超, 等. 药物多晶型的过程控制和工程技术进展[J]. 中国医药工业杂志, 2018, 49(5): 537-546. |
| Zhang Y, Cheng J C, Yang C, et al. Progress in the process control of pharmaceutical polymorphism and engineering[J]. Chinese Journal of Pharmaceuticals, 2018, 49(5): 537-546. | |
| [13] | Ma Y M, Wu S G, Macaringue E G J, et al. Recent progress in continuous crystallization of pharmaceutical products: precise preparation and control[J]. Organic Process Research & Development, 2020, 24(10): 1785-1801. |
| [14] | Nagy Z K, Braatz R D. Advances and new directions in crystallization control[J]. Annual Review of Chemical and Biomolecular Engineering, 2012, 3: 55-75. |
| [15] | 龚俊波, 孙杰, 王静康. 面向智能制造的工业结晶研究进展[J]. 化工学报, 2018, 69(11): 4505-4517. |
| Gong J B, Sun J, Wang J K. Research progress of industrial crystallization towards intelligent manufacturing[J]. CIESC Journal, 2018, 69(11): 4505-4517. | |
| [16] | Zhang F K, Meng A Z, Long Y, et al. Advances and opportunities concerning nucleation measurement and control technology in crystallization[J]. Organic Process Research & Development, 2024, 28(8): 3055-3077. |
| [17] | Lu M J, Rao S L, Yue H, et al. Recent advances in the application of machine learning to crystal behavior and crystallization process control[J]. Crystal Growth & Design, 2024, 24(12): 5374-5396. |
| [18] | Zhu Z X, Zhang Y, Wang Z X, et al. Artificial intelligence assisted pharmaceutical crystallization[J]. Crystal Growth & Design, 2024, 24(10): 4245-4270. |
| [19] | Cornel J, Lindenberg C, Mazzotti M. Quantitative application of in situ ATR-FTIR and Raman spectroscopy in crystallization processes[J]. Industrial & Engineering Chemistry Research, 2008, 47(14): 4870-4882. |
| [20] | Liu X J, Zhang Y, Wang X Z. Study on co-crystallization of LCZ696 using in situ ATR-FTIR and imaging[J]. Crystals, 2020, 10(10): 922. |
| [21] | Hansen T B, Simone E, Nagy Z, et al. Process analytical tools to control polymorphism and particle size in batch crystallization processes[J]. Organic Process Research & Development, 2017, 21(6): 855-865. |
| [22] | Tacsi K, Gyürkés M, Csontos I, et al. Polymorphic concentration control for crystallization using Raman and attenuated total reflectance ultraviolet visible spectroscopy[J]. Crystal Growth & Design, 2020, 20(1): 73-86. |
| [23] | Mehmood T, Ahmed B. The diversity in the applications of partial least squares: an overview[J]. Journal of Chemometrics, 2016, 30(1): 4-17. |
| [24] | Zhang F K, Du K, Guo L Y, et al. Progress, problems, and potential of technology for measuring solution concentration in crystallization processes[J]. Measurement, 2022, 187: 110328. |
| [25] | Zhang Y, Zhang L, Zhou G Z, et al. PAT aided feasibility study on continuous crystallization of benzotriazole[J]. Organic Process Research & Development, 2024, 28(9): 3625-3636. |
| [26] | 徐啟蕾, 郭鲁钰, 杜康, 等. 基于ATR-FTIR光谱测量结晶过程溶液浓度的变量稳定加权混合收缩方法[J]. 光谱学与光谱分析, 2023, 43(5): 1413-1418. |
| Xu Q L, Guo L Y, Du K, et al. A hybrid shrinkage strategy based on variable stable weighted for solution concentration measurement in crystallization via ATR-FTIR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(5): 1413-1418. | |
| [27] | Abu Bakar M R, Nagy Z K, Saleemi A N, et al. The impact of direct nucleation control on crystal size distribution in pharmaceutical crystallization processes[J]. Crystal Growth & Design, 2009, 9(3): 1378-1384. |
| [28] | Acevedo D, Wu W, Yang X C, et al. Evaluation of focused beam reflectance measurement (FBRM) for monitoring and predicting the crystal size of carbamazepine in crystallization processes[J]. CrystEngComm, 2021, 23(4): 972-985. |
| [29] | Agimelen O S, Svoboda V, Ahmed B, et al. Multi-sensor inline measurements of crystal size and shape distributions during high shear wet milling of crystal slurries[J]. Advanced Powder Technology, 2018, 29(12): 2987-2995. |
| [30] | De Anda J C, Wang X Z, Lai X, et al. Real-time product morphology monitoring in crystallization using imaging technique[J]. AIChE Journal, 2005, 51(5): 1406-1414. |
| [31] | Ma C Y, Liu J J, Wang X Z. Measurement, modelling, and closed-loop control of crystal shape distribution: literature review and future perspectives[J]. Particuology, 2016, 26: 1-18. |
| [32] | Simone E, Saleemi A N, Nagy Z K. Application of quantitative Raman spectroscopy for the monitoring of polymorphic transformation in crystallization processes using a good calibration practice procedure[J]. Chemical Engineering Research and Design, 2014, 92(4): 594-611. |
| [33] | Hu Y R, Liang J K, Myerson A S, et al. Crystallization monitoring by Raman spectroscopy: simultaneous measurement of desupersaturation profile and polymorphic form in flufenamic acid systems[J]. Industrial & Engineering Chemistry Research, 2005, 44(5): 1233-1240. |
| [34] | Simone E, Saleemi A N, Tonnon N, et al. Active polymorphic feedback control of crystallization processes using a combined Raman and ATR-UV/Vis spectroscopy approach[J]. Crystal Growth & Design, 2014, 14(4): 1839-1850. |
| [35] | Powell K A, Saleemi A N, Rielly C D, et al. Monitoring continuous crystallization of paracetamol in the presence of an additive using an integrated PAT array and multivariate methods[J]. Organic Process Research & Development, 2016, 20(3): 626-636. |
| [36] | Wilkinson M J, Jennings K H, Hardy M. Non-invasive video imaging for interrogating pharmaceutical crystallization processes[J]. Microscopy and Microanalysis, 2000, 6(S2): 996-997. |
| [37] | Blandin A F, Rivoire A, Mangin D, et al. Using in situ image analysis to study the kinetics of agglomeration in suspension[J]. Particle & Particle Systems Characterization, 2000, 17(1): 16-20. |
| [38] | Huo Y, Liu T, Liu H, et al. In-situ crystal morphology identification using imaging analysis with application to the L-glutamic acid crystallization[J]. Chemical Engineering Science, 2016, 148: 126-139. |
| [39] | Zhu Q H, Zhou G Z, Hou G H, et al. On-line image analysis for evaporative crystallization of xylose[J]. Powder Technology, 2025, 452: 120446. |
| [40] | Su W Y, Hao H X, Barrett M, et al. The impact of operating parameters on the polymorphic transformation of D-mannitol characterized in situ with Raman spectroscopy, FBRM, and PVM[J]. Organic Process Research & Development, 2010, 14(6): 1432-1437. |
| [41] | Liu W J, Wei H Y, Zhao J T, et al. Investigation into the cooling crystallization and transformations of carbamazepine using in situ FBRM and PVM[J]. Organic Process Research & Development, 2013, 17(11): 1406-1412. |
| [42] | Barrett P, Glennon B. Characterizing the metastable zone width and solubility curve using Lasentec FBRM and PVM[J]. Chemical Engineering Research and Design, 2002, 80(7): 799-805. |
| [43] | Liu J J, Ma C Y, Wang X Z. Imaging protein crystal growth behaviour in batch cooling crystallisation[J]. Chinese Journal of Chemical Engineering, 2016, 24(1): 101-108. |
| [44] | Tang X H, Liu J J, Zhang Y, et al. Study on the influence of lysozyme crystallization conditions on crystal properties in crystallizers of varied sizes when temperature is the manipulated variable[J]. Journal of Crystal Growth, 2018, 498: 186-196. |
| [45] | Jiang M, Braatz R D. Designs of continuous-flow pharmaceutical crystallizers: developments and practice[J]. CrystEngComm, 2019, 21(23): 3534-3551. |
| [46] | Domokos A, Nagy B, Szilágyi B, et al. Integrated continuous pharmaceutical technologies—a review[J]. Organic Process Research & Development, 2021, 25(4): 721-739. |
| [47] | Ferguson S, Morris G, Hao H X, et al. In-situ monitoring and characterization of plug flow crystallizers[J]. Chemical Engineering Science, 2012, 77: 105-111. |
| [48] | Su Q L, Nagy Z K, Rielly C D. Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages: modelling, design, and control[J]. Chemical Engineering and Processing: Process Intensification, 2015, 89: 41-53. |
| [49] | Eren A, Civati F, Ma W C, et al. Continuous crystallization and its potential use in drug substance manufacture: a review[J]. Journal of Crystal Growth, 2023, 601: 126958. |
| [50] | Wang X Z, Roberts K J, Ma C Y. Crystal growth measurement using 2D and 3D imaging and the perspectives for shape control[J]. Chemical Engineering Science, 2008, 63(5): 1173-1184. |
| [51] | Schorsch S, Vetter T, Mazzotti M. Measuring multidimensional particle size distributions during crystallization[J]. Chemical Engineering Science, 2012, 77: 130-142. |
| [52] | Wu Y Y, Gao Z G, Rohani S. Deep learning-based oriented object detection for in situ image monitoring and analysis: a process analytical technology (PAT) application for taurine crystallization[J]. Chemical Engineering Research and Design, 2021, 170: 444-455. |
| [53] | Huo Y, Li X, Tu B B. Image measurement of crystal size growth during cooling crystallization using high-speed imaging and a U-Net network[J]. Crystals, 2022, 12(12): 1690. |
| [54] | Li Y, Zhang Y, Wang X Z. Secondary nucleation kinetics of AIBN crystallisation in methanol: online imaging-based measurement and modelling[J]. Crystals, 2020, 10(6): 506. |
| [55] | Patience D B, Rawlings J B. Particle-shape monitoring and control in crystallization processes[J]. AIChE Journal, 2001, 47(9): 2125-2130. |
| [56] | De Anda J C, Wang X Z, Roberts K J. Multi-scale segmentation image analysis for the in-process monitoring of particle shape with batch crystallisers[J]. Chemical Engineering Science, 2005, 60(4): 1053-1065. |
| [57] | Li C H, Lee C K. Minimum cross entropy thresholding[J]. Pattern Recognition, 1993, 26(4): 617-625. |
| [58] | Vancleef A, Maes D, Van Gerven T, et al. Flow-through microscopy and image analysis for crystallization processes[J]. Chemical Engineering Science, 2022, 248: 117067. |
| [59] | Nazeran H, Rice F, Moran W, et al. Biomedical image processing in pathology: a review[J]. Australasian Physical and Engineering Sciences in Medicine, 1995, 18(1): 26-38. |
| [60] | Kacker R, Maaß S, Emmerich J, et al. Application of inline imaging for monitoring crystallization process in a continuous oscillatory baffled crystallizer[J]. AIChE Journal, 2018, 64(7): 2450-2461. |
| [61] | LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521: 436-444. |
| [62] | Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3[J]. Nature, 2024, 630: 493-500. |
| [63] | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778. |
| [64] | Dosovitskiy A. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2025-02-03]. . |
| [65] | Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
| [66] | Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. [2025-02-03]. . |
| [67] | He K M, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 2980-2988. |
| [68] | Bolya D, Zhou C, Xiao F Y, et al. YOLACT: real-time instance segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE, 2019: 9156-9165. |
| [69] | Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241. |
| [70] | Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
| [71] | Bruno A E, Charbonneau P, Newman J, et al. Classification of crystallization outcomes using deep convolutional neural networks[J]. PLoS One, 2018, 13(6): e0198883. |
| [72] | Milne J, Qian C, Hargreaves D, et al. Not getting in too deep: a practical deep learning approach to routine crystallisation image classification[J]. PLoS One, 2023, 18(3): e0282562. |
| [73] | Huang L, Yang D Y, Yu Z M, et al. Deep learning-aided high-throughput screening of time-resolved protein crystallization on programmable microliter-droplet systems[J]. Chemical Engineering Journal, 2022, 450: 138267. |
| [74] | Zhang J L, Meng Y M, Wu J F, et al. Monitoring sugar crystallization with deep neural networks[J]. Journal of Food Engineering, 2020, 280: 109965. |
| [75] | Salami H, McDonald M A, Bommarius A S, et al. In situ imaging combined with deep learning for crystallization process monitoring: application to cephalexin production[J]. Organic Process Research & Development, 2021, 25(7): 1670-1679. |
| [76] | Ding N, Bao X, Sun S T, et al. High-precision real-time urine crystallization recognition based on dilated bilinear space pyramid ConvNext[J]. International Journal of Imaging Systems and Technology, 2024, 34(2): e22999. |
| [77] | Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3523-3542. |
| [78] | Gu W C, Bai S, Kong L X. A review on 2D instance segmentation based on deep neural networks[J]. Image and Vision Computing, 2022, 120: 104401. |
| [79] | Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 936-944. |
| [80] | Gao Z G, Wu Y Y, Bao Y, et al. Image analysis for in-line measurement of multidimensional size, shape, and polymorphic transformation of L-glutamic acid using deep learning-based image segmentation and classification[J]. Crystal Growth & Design, 2018, 18(8): 4275-4281. |
| [81] | Fang L, Liu J, Han D D, et al. Revealing the role of polymer in the robust preparation of the 2,4-dichlorophenoxyacetic acid metastable crystal form by AI-based image analysis[J]. Powder Technology, 2023, 413: 118077. |
| [82] | Zong S L, Zhou G Z, Li M, et al. Deep learning-based on-line image analysis for continuous industrial crystallization processes[J]. Particuology, 2023, 74: 173-183. |
| [83] | Li M Y, Liu J, Yao T, et al. Deep-learning based in situ micrograph analysis of high-density crystallization slurry using image and data enhancement strategy[J]. Powder Technology, 2024, 437: 119582. |
| [84] | Liu S, Qi L, Qin H F, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8759-8768. |
| [85] | He J X, Zhou J H, Dong J P, et al. Revealing the effects of microwell sizes on the crystal growth kinetics of active pharmaceutical ingredients by deep learning[J]. Chemical Engineering Journal, 2022, 428: 131986. |
| [86] | Manee V, Zhu W, Romagnoli J A. A deep learning image-based sensor for real-time crystal size distribution characterization[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23175-23186. |
| [87] | Li X T, Ding H H, Yuan H B, et al. Transformer-based visual segmentation: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10138-10163. |
| [88] | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Curran Associates Inc., 2017: 6000-6010. |
| [89] | Zuo S Q, Xiao Y, Chang X J, et al. Vision transformers for dense prediction: a survey[J]. Knowledge-Based Systems, 2022, 253: 109552. |
| [90] | Liu Z, Lin Y T, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, 2021: 9992-10002. |
| [91] | Xiao T T, Liu Y C, Zhou B L, et al. Unified perceptual parsing for scene understanding[C]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 432-448. |
| [92] | Wang H, Fan J, Liu T, et al. Deep learning-based image analysis with RTFormer network for measuring 2D crystal size distribution during cooling crystallization of β form L-glutamic acid[J]. Measurement, 2025, 242: 116227. |
| [93] | Zhang H W, Zhu Y, Wang D, et al. A survey on visual mamba[J]. Applied Sciences, 2024, 14(13): 5683. |
| [94] | Chlap P, Min H, Vandenberg N, et al. A review of medical image data augmentation techniques for deep learning applications[J]. Journal of Medical Imaging and Radiation Oncology, 2021, 65(5): 545-563. |
| [95] | Zhuang F Z, Qi Z Y, Duan K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76. |
| [96] | Li R F, Thomson G B, White G, et al. Integration of crystal morphology modeling and on-line shape measurement[J]. AIChE Journal, 2006, 52(6): 2297-2305. |
| [97] | Borchert C, Temmel E, Eisenschmidt H, et al. Image-based in situ identification of face specific crystal growth rates from crystal populations[J]. Crystal Growth & Design, 2014, 14(3): 952-971. |
| [98] | Kempkes M, Vetter T, Mazzotti M. Measurement of 3D particle size distributions by stereoscopic imaging[J]. Chemical Engineering Science, 2010, 65(4): 1362-1373. |
| [99] | Schorsch S, Ochsenbein D R, Vetter T, et al. High accuracy online measurement of multidimensional particle size distributions during crystallization[J]. Chemical Engineering Science, 2014, 105: 155-168. |
| [100] | Ma C Y, Liu J J, Wang X Z. Stereo imaging of crystal growth[J]. AIChE Journal, 2016, 62(1): 18-25. |
| [101] | Zhang R, Ma C Y, Liu J J, et al. On-line measurement of the real size and shape of crystals in stirred tank crystalliser using non-invasive stereo vision imaging[J]. Chemical Engineering Science, 2015, 137: 9-21. |
| [102] | Wu K, Ma C Y, Liu J J, et al. Measurement of crystal face specific growth kinetics[J]. Crystal Growth & Design, 2016, 16(9): 4855-4868. |
| [103] | Huo Y, Liu T, Wang X Z, et al. Online detection of particle agglomeration during solution crystallization by microscopic double-view image analysis[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11257-11269. |
| [104] | Huo Y, Liu T, Yang Y X, et al. In situ measurement of 3D crystal size distribution by double-view image analysis with case study onl-glutamic acid crystallization[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4646-4658. |
| [105] | Chen Y B, Mancini M, Zhu X T, et al. Semi-supervised and unsupervised deep visual learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(3): 1327-1347. |
| [106] | Shu Y D, Liu J J, Zhang Y, et al. Considering nucleation, breakage and aggregation in morphological population balance models for crystallization processes[J]. Computers & Chemical Engineering, 2020, 136: 106781. |
| [107] | 周光正, 王学重, 周浩宇. 溶酶菌蛋白质结晶的多目标优化与模拟[J]. 化工学报, 2023, 74(10): 4191-4200. |
| Zhou G Z, Wang X Z, Zhou H Y. Multi-objective optimization and simulation of lysozyme protein crystallization[J]. CIESC Journal, 2023, 74(10): 4191-4200. | |
| [108] | 李川, 洪振取, 单宝明, 等. 求解多维粒数衡算方程的高阶紧致差分方法[J]. 化工学报, 2024, 75(12): 4513-4522. |
| Li C, Hong Z Q, Shan B M, et al. High-order compact difference method for solving the multidimensional population balance equation[J]. CIESC Journal, 2024, 75(12): 4513-4522. | |
| [109] | Wang H L, Yang L, Li X Y, et al. Polydisperse particle inline image method and its application onto gas-liquid flow in a stirred tank[J]. AIChE Journal, 2024, 70(6): e18398. |
| [110] | Wang X L, Zhou G Z, Liang L P, et al. Deep learning-based image analysis for in situ microscopic imaging of cell culture process[J]. Engineering Applications of Artificial Intelligence, 2024, 129: 107621. |
| [111] | Zhang S Y, Liang X, Huang X Y, et al. Precise and fast microdroplet size distribution measurement using deep learning[J]. Chemical Engineering Science, 2022, 247: 116926. |
| [1] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [2] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [3] | 郭旭, 贾继宁, 姚克俭. 基于优化CNN-BiLSTM神经网络的间歇精馏过程建模[J]. 化工学报, 2025, 76(9): 4613-4629. |
| [4] | 娄岚浩, 杨立鹏, 杨晓光. 锂离子电池电化学机理模型参数辨识研究综述[J]. 化工学报, 2025, 76(9): 4369-4382. |
| [5] | 刘璐, 王文玥, 王腾, 王太, 董新宇, 汤建成, 王少恒. 基于双混合工质深冷的氢液化工艺优化与分析[J]. 化工学报, 2025, 76(9): 4933-4943. |
| [6] | 李雪雯, 王治红, 高阳, 吴明鸥, 马文皓, 谭仁敏. 基于热泵技术的醇胺法脱硫再生系统多目标优化研究[J]. 化工学报, 2025, 76(9): 4563-4577. |
| [7] | 赵婧, 董书辰, 李高洋, 黄友科, 石浩森, 缪舒文, 谭辰妍, 朱唐琦, 李永帅, 潘慧, 凌昊. 基于电化学模型的电池性能模拟与优化[J]. 化工学报, 2025, 76(9): 4922-4932. |
| [8] | 张建伟, 刘玉成, 董鑫, 冯颖. 气泡扰动强化撞击流共沉淀法合成碳酸钙粉体[J]. 化工学报, 2025, 76(8): 4052-4060. |
| [9] | 陈治宏, 吴佳伟, 楼小玲, 贠军贤. 化学品生物制造过程机器学习的研究进展[J]. 化工学报, 2025, 76(8): 3789-3804. |
| [10] | 张景皓, 王亚君, 张永康. 基于NRBO-SLSTM的化工过程运行状态评价[J]. 化工学报, 2025, 76(8): 4145-4154. |
| [11] | 戴元燊, 邵之江, 陈伟锋, 陈宁. 基于粒数衡算方程的三元前体结晶过程粒度分布动态预测方法[J]. 化工学报, 2025, 76(8): 4119-4128. |
| [12] | 吴小龙, 黄晓璜, 肖媛, 单灵海, 叶家慧, 崔国民. 一种预留节点策略应用于换热网络优化[J]. 化工学报, 2025, 76(7): 3388-3402. |
| [13] | 王涛, 李光明, 胡秋霞, 徐静. 基于时序演变粒子群算法的双色注射产品翘曲工艺优化[J]. 化工学报, 2025, 76(7): 3403-3415. |
| [14] | 张海丰, 闫静怡, 岳玉学, 张子龙, 王柏林, 李小年. WO3纳米颗粒定性表面羟基化重构及其改性变压器油机制研究[J]. 化工学报, 2025, 76(7): 3696-3709. |
| [15] | 王富玉, 周晅毅. 结合非定常伴随方程和遗传算法的化工区反演[J]. 化工学报, 2025, 76(6): 3104-3114. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号