• •
收稿日期:2024-03-17
修回日期:2024-06-25
出版日期:2025-07-03
通讯作者:
魏进家
作者简介:刘辉(1998—),男,博士研究生,lh3041594963@stu.xjtu.edu.cn
基金资助:Received:2024-03-17
Revised:2024-06-25
Online:2025-07-03
Contact:
Jinjia WEI
摘要:
使用安全无污染前驱体,通过改进的溶胶凝胶法合成了Mn、Al共掺杂钙基储能材料,对材料的各项储能性能进行了研究,并考察了初步放大合成对材料性能的影响。结果表明,乙酸钙前驱体合成的共掺杂材料Ca100Mn15Al10-Ac在1000次储能循环中表现出优异的稳定性,性能仅衰减23.2%,且主要集中在前期,其平均光吸收率也达到70%,通过形貌分析发现共掺杂材料在循环过程中演化出的稳定多孔结构有效抑制性能衰减。材料的初步放大合成以及添加微晶纤维素黏结剂不会对Ca100Mn15Al10-Ac的稳定性造成负面影响,有利于后续大规模制备。
刘辉, 魏进家. Mn/Al改性的高稳定性钙基储能材料[J]. 化工学报, DOI: 10.11949/0438-1157.20250262.
Hui LIU, Jinjia WEI. Mn/Al modified calcium-based energy storage materials with high stability[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250262.
图2 循环中二氧化碳流量曲线(围成的面积为煅烧阶段的二氧化碳释放量)
Fig.2 CO2 flow rate in one energy storage cycle (The yellow area is equal to the volume of carbon dioxide released in calcination process)
| 掺杂钙基材料 | 碳酸化温度 [℃] | 碳酸化时间 [min] | 首次储能密度 [kJ/kg] | 循环次数 /衰减率 | 文献 |
|---|---|---|---|---|---|
| CaCO3/Fe,Mn | 700 | 10 | 1500 | 60 / 3.3% | [ |
| CaO/Al,Mn,Fe,Li | 725 | 20 | 1746 | 60 / 4.26% | [ |
| CaCO3/Ti,Al,Mg | 750 | 10 | 1157 | 100 / 7% | [ |
| CaO/Mn,Mg | 800 | 10 | 1604 | 100 / 6.23% | [ |
| CaO/Al | 850 | 10 | 1496 | 100 / 32% | [ |
| CaO/Mn,Al | 800 | 10 | 1245.7 | 1000 / 23.2% | This study |
表1 各种用于储能的改性钙基材料对比
Table 1 Comparison of various modified calcium-based materials for energy storage
| 掺杂钙基材料 | 碳酸化温度 [℃] | 碳酸化时间 [min] | 首次储能密度 [kJ/kg] | 循环次数 /衰减率 | 文献 |
|---|---|---|---|---|---|
| CaCO3/Fe,Mn | 700 | 10 | 1500 | 60 / 3.3% | [ |
| CaO/Al,Mn,Fe,Li | 725 | 20 | 1746 | 60 / 4.26% | [ |
| CaCO3/Ti,Al,Mg | 750 | 10 | 1157 | 100 / 7% | [ |
| CaO/Mn,Mg | 800 | 10 | 1604 | 100 / 6.23% | [ |
| CaO/Al | 850 | 10 | 1496 | 100 / 32% | [ |
| CaO/Mn,Al | 800 | 10 | 1245.7 | 1000 / 23.2% | This study |
图5 各样品的XRD图谱。(a)10°-80°全谱图;(b)和(c)主峰放大图
Fig.5 XRD patterns of various samples. (a) Patterns ranged from 10° to 80°; (b) and (c) the magnified pattern of the CaO peaks ((200) and (220))
图7 各样品扫描电镜图。(a)新鲜Ca100Al10-Ac样品;(b)100次循环后Ca100Al10-Ac样品;(c)新鲜Ca100Al10-Ac样品EDS图谱;(d)新鲜Ca100Mn15-Ac样品;(e)100次循环后Ca100Mn15-Ac样品(f)新鲜Ca100Mn15-Ac样品EDS图谱;(g)(j)新鲜Ca100Mn15Al10-Ac样品;(h)(k)1000次循环后Ca100Mn15Al10-Ac样品;(i)新鲜Ca100Mn15Al10-Ac样品EDS图谱
Fig.7 SEM images and corresponding EDS images of various samples. (a) Fresh Ca100Al10-Ac; (b) 100th cycled Ca100Al10-Ac; (c) EDS images of fresh Ca100Al10-Ac; (d) Fresh Ca100Mn15-Ac; (e) 100th cycled Ca100Mn15-Ac; (f) EDS images of fresh Ca100Mn15-Ac; (g)(h) Fresh Ca100Mn15Al10-Ac; (j)(k) Ca100Mn15Al10-Ac after 1000 cycles; (i) EDS images of fresh Ca100Mn15Al10-Ac
| [1] | Leonard M D, Michaelides E E, Michaelides D N. Energy storage needs for the substitution of fossil fuel power plants with renewables[J]. Renewable Energy, 2020, 145: 951-962.[LinkOut] |
| [2] | Lv J Q, Xie J F, Mohamed A G A, et al. Solar utilization beyond photosynthesis[J]. Nature Reviews. Chemistry, 2023, 7(2): 91-105.[PubMed] |
| [3] | Wang G, Zhang Z, Lin J Q. Multi-energy complementary power systems based on solar energy: a review[J]. Renewable and Sustainable Energy Reviews, 2024, 199: 114464.[LinkOut] |
| [4] | Romero M, Steinfeld A. Concentrating solar thermal power and thermochemical fuels[J]. Energy & Environmental Science, 2012, 5(11): 9234-9245.[LinkOut] |
| [5] | He Y L, Qiu Y, Wang K, et al. Perspective of concentrating solar power[J]. Energy, 2020, 198: 117373.[LinkOut] |
| [6] | Raganati F, Chirone R, Ammendola P. Calcium-looping for thermochemical energy storage in concentrating solar power applications: Evaluation of the effect of acoustic perturbation on the fluidized bed carbonation[J]. Chemical Engineering Journal, 2020, 392: 123658.[LinkOut] |
| [7] | 凌祥, 宋丹阳, 陈晓轶, 等. 钙基热化学储能体系装备与系统研究进展[J]. 化工进展, 2021, 40(4): 1777-1796. |
| Ling X, Song D Y, Chen X Y, et al. Progress in equipment and systems for calcium-based thermochemical energy storage system[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1777-1796.[知网中文][知网英文][万方][知网中文带页码] | |
| [8] | Tian X K, Guo S J, Lv X J, et al. Progress in multiscale research on calcium-looping for thermochemical energy storage: From materials to systems[J]. Progress in Energy and Combustion Science, 2025, 106: 101194.[LinkOut] |
| [9] | Ortiz C, Chacartegui R, Valverde J M, et al. Power cycles integration in concentrated solar power plants with energy storage based on calcium looping[J]. Energy Conversion and Management, 2017, 149: 815-829.[LinkOut] |
| [10] | Teng L, Xuan Y M, Da Y, et al. Modified Ca-Looping materials for directly capturing solar energy and high-temperature storage[J]. Energy Storage Materials, 2020, 25: 836-845.[LinkOut] |
| [11] | 郑玉圆, 葛志伟, 韩翔宇, 等. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
| Zheng Y Y, Ge Z W, Han X Y, et al. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials[J]. CIESC Journal, 2023, 74(8): 3171-3192.[知网中文][知网英文][万方][机构或注册用户_知网中文带页码] | |
| [12] | Tian X K, Lin S C, Yan J, et al. Sintering mechanism of calcium oxide/calcium carbonate during thermochemical heat storage process[J]. Chemical Engineering Journal, 2022, 428: 131229.[LinkOut] |
| [13] | Wang J F, Xiong W, Ding Z X, et al. Enhancing the stability of CaO-based looping materials in thermochemical energy storage by codoping Y and Mg[J]. ACS Applied Energy Materials, 2024, 7(24): 12165-12173.[LinkOut] |
| [14] | Wang K, Gu F, Clough P T, et al. Porous MgO-stabilized CaO-based powders/pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants[J]. Chemical Engineering Journal, 2020, 390: 124163.[LinkOut] |
| [15] | Huang X K, Ma X T, Li J, et al. Enhancement effects of hydrolysable/soluble Al-type dopants on the efficiency of CaO/CaCO3 thermochemical energy storage[J]. Chemical Engineering Journal, 2024, 490: 151555.[LinkOut] |
| [16] | Han R, Gao J H, Wei S Y, et al. Development of dense Ca-based, Al-stabilized composites with high volumetric energy density for thermochemical energy storage of concentrated solar power[J]. Energy Conversion and Management, 2020, 221: 113201.[LinkOut] |
| [17] | Hu Y C, He W Z, Cao J X, et al. Decorating CaO with dark Ca2MnO4 for direct solar thermal conversion and stable thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 248: 111977.[LinkOut] |
| [18] | Guo H X, Kou X C, Zhao Y J, et al. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: Textural properties, electron donation, and oxygen vacancy[J]. Chemical Engineering Journal, 2018, 334: 237-246.[LinkOut] |
| [19] | Chen X B, Tang Y T, Ke C C, et al. CO2 capture by double metal modified CaO-based sorbents from pyrolysis gases[J]. Chinese Journal of Chemical Engineering, 2022, 43: 40-49.[LinkOut] |
| [20] | Jiang T, Zhang H, Zhao Y J, et al. Kilogram-scale production and pelletization of Al-promoted CaO-based sorbent for CO2 capture[J]. Fuel, 2021, 301: 121049.[LinkOut] |
| [21] | Sun H, Li Y J, Yan X Y, et al. Thermochemical energy storage performance of Al2O3/CeO2 Co-doped CaO-based material under high carbonation pressure[J]. Applied Energy, 2020, 263: 114650.[LinkOut] |
| [22] | Li C L, Li Y J, Zhang C X, et al. CaO/CaCO3 thermochemical energy storage performance of high-alumina granule stabilized papermaking soda residue[J]. Fuel Processing Technology, 2022, 237: 107444.[LinkOut] |
| [23] | Gao C Y, Zhang Y, Liu X L, et al. A dual modification method to prepare carbide slag into highly active CaO-based solar energy storage materials[J]. Industrial & Engineering Chemistry Research, 2024, 63(1): 769-779.[LinkOut] |
| [24] | Kim S M, Kierzkowska A M, Broda M, et al. Sol-gel synthesis of MgAl2O4-stabilized CaO for CO2 capture[J]. Energy Procedia, 2017, 114: 220-229.[LinkOut] |
| [25] | Luo T, Luo C, Shi Z W, et al. Optimization of Sol-gel combustion synthesis for calcium looping CO2 sorbents, part Ⅰ: Effects of Sol-gel preparation and combustion conditions[J]. Separation and Purification Technology, 2022, 292: 121081.[LinkOut] |
| [26] | Song C, Liu X L, Zheng H B, et al. Decomposition kinetics of Al- and Fe-doped calcium carbonate particles with improved solar absorbance and cycle stability[J]. Chemical Engineering Journal, 2021, 406: 126282.[LinkOut] |
| [27] | Angeli S D, Martavaltzi C S, Lemonidou A A. Development of a novel-synthesized Ca-based CO2 sorbent for multicycle operation: Parametric study of sorption[J]. Fuel, 2014, 127: 62-69.[LinkOut] |
| [28] | Chen H C, Zhang P P, Duan Y F, et al. Reactivity enhancement of calcium based sorbents by doped with metal oxides through the Sol–gel process[J]. Applied Energy, 2016, 162: 390-400.[LinkOut] |
| [29] | Liu X L, Yuan C J, Zheng H B, et al. Synergy of Li2CO3 promoters and Al-Mn-Fe stabilizers in CaCO3 pellets enables efficient direct solar-driven thermochemical energy storage[J]. Materials Today Energy, 2022, 30: 101174.[LinkOut] |
| [30] | Carrillo A J, González-Aguilar J, Romero M, et al. Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials[J]. Chemical Reviews, 2019, 119(7): 4777-4816.[PubMed] |
| [31] | Tian X K, Lin S C, Yan J, et al. Improved durability in thermochemical energy storage using Ti/Al/Mg Co-doped Calcium-based composites with hierarchical Meso/Micro pore structures[J]. Chemical Engineering Journal, 2022, 450: 138142.[LinkOut] |
| [32] | Liu H, Li Y Z, Wei J J. High performance Mn/Mg co-modified calcium-based material via EDTA chelating agent for effective solar energy storage[J]. Chemical Engineering Journal, 2024, 480: 147892.[LinkOut] |
| [33] | Koirala R, Reddy G K, Smirniotis P G. Single nozzle flame-made highly durable metal doped Ca-based sorbents for CO2Capture at high temperature[J]. Energy & Fuels, 2012, 26(5): 3103-3109.[LinkOut] |
| [34] | Zhou Z M, Qi Y, Xie M M, et al. Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance[J]. Chemical Engineering Science, 2012, 74: 172-180.[LinkOut] |
| [35] | Torma A J, Li W B, Zhang H, et al. Interstitial nature of Mn2+ doping in 2D perovskites[J]. ACS Nano, 2021, 15(12): 20550-20561.[PubMed] |
| [1] | 裴星亮, 叶翠平, 裴赢丽, 李文英. 碱改性MIL-53(Cr)选择性吸附分离二甲苯异构体[J]. 化工学报, 2025, 76(S1): 258-267. |
| [2] | 孔俊龙, 毕扬, 赵耀, 代彦军. 储能电池直冷热管理系统的模拟实验[J]. 化工学报, 2025, 76(S1): 289-296. |
| [3] | 吴梓航, 徐震原, 游锦方, 潘权稳, 王如竹. 基于吸附式储冷技术的深井钻探设备冷却系统[J]. 化工学报, 2025, 76(S1): 309-317. |
| [4] | 肖鑫, 杨耿, 王云峰. 基于TRNSYS的太阳能梯级蓄热热泵系统模拟[J]. 化工学报, 2025, 76(S1): 393-400. |
| [5] | 黄国瑞, 赵耀, 谢明熹, 陈尔健, 代彦军. 一种新型数据中心余热回收系统实验与分析[J]. 化工学报, 2025, 76(S1): 409-417. |
| [6] | 徐智超, 俞镇东, 吴昊峰, 吴沛文, 武洪翔, 巢艳红, 朱文帅, 刘植昌, 徐春明. 富酸位13X分子筛的制备及其超深度吸附脱除生物柴油中硫醇[J]. 化工学报, 2025, 76(5): 2198-2208. |
| [7] | 齐昊, 王玉杰, 李申辉, 邹琦, 刘轶群, 赵之平. 双金属Co/Zn-ZIFs中C3H6和C3H8吸附和扩散行为分子模拟研究[J]. 化工学报, 2025, 76(5): 2313-2326. |
| [8] | 陶春珲, 李印辉, 傅钰, 段然, 赵泽一, 唐羽丰, 张罡, 马和平. 不同吸附剂对低浓度Kr气的选择性吸附与纯化[J]. 化工学报, 2025, 76(5): 2358-2366. |
| [9] | 张越, 刘佳鑫, 马敬, 刘毅. 金属有机骨架膜应用于海水提铀研究进展[J]. 化工学报, 2025, 76(5): 2087-2100. |
| [10] | 郭彭涛, 王婷, 薛波, 应允攀, 刘大欢. 用于CH4/N2分离的多吸附位点超微孔MOF[J]. 化工学报, 2025, 76(5): 2304-2312. |
| [11] | 唐磊, 王振菲, 李聪利, 杨佳辉, 郑浩, 石琪, 董晋湘. Co-MOF-74和Mg-MOF-74的CO工作吸附容量及操作条件[J]. 化工学报, 2025, 76(5): 2279-2293. |
| [12] | 李艳, 雷美丽, 李鑫钢. 基于分离性能的顺序式模拟移动床结构调控策略[J]. 化工学报, 2025, 76(5): 2219-2229. |
| [13] | 巴雅琪, 吴涛, 邸安頔, 陆安慧. 多孔炭材料用于低碳烃分离的研究进展[J]. 化工学报, 2025, 76(5): 2136-2157. |
| [14] | 谈朋, 李雪梅, 刘晓勤, 孙林兵. 基于柔性MOFs的磁响应复合材料及其丙烯吸附性能研究[J]. 化工学报, 2025, 76(5): 2230-2240. |
| [15] | 马瑞洁, 黄子轩, 关雪倩, 陈光进, 刘蓓. ZIF-8/DMPU浆液分离C2H6/ CH4混合气研究[J]. 化工学报, 2025, 76(5): 2262-2269. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号
