• •
李跃军1, 曹铁平1,2, 孙大伟2
收稿日期:2025-03-20
修回日期:2025-05-17
出版日期:2025-06-27
通讯作者:
曹铁平
作者简介:李跃军(1964—),男,硕士,教授,bc640628-163.com
基金资助:Yuejun LI1, Tieping CAO1,2, Dawei SUN2
Received:2025-03-20
Revised:2025-05-17
Online:2025-06-27
Contact:
Tieping CAO
摘要:
本文通过静电纺丝技术结合溶剂热法,成功构建了具有分级结构的Bi/PANI/CeO2三元协同催化体系。该体系通过PANI纳米纤维原位构建Bi纳米粒子与CeO2纳米立方体,形成独特的S型异质结构。多维度表征结果表明,Bi/PANI/CeO2在模拟太阳光下表现出优异的CO2还原性能;光照3小时后,CO和CH4生成速率分别达到12.38 μmol·g-¹·h-¹和4.86 μmol·g-¹·h-¹,显著优于纯PANI纳米纤维(CO: 0.48 μmol·g-¹·h-¹;CH4: 0.54 μmol·g-¹·h-¹),实现了26倍和9倍的性能提升,且15次循环后性能保持率达90%。该材料通过S型异质结能带匹配机制实现光生载流子高效分离,同时Bi纳米粒子的表面等离子体共振(SPR)效应协同激活电子并诱导活性位点,为CO2还原提供双重驱动力。本研究不仅为设计高效光催化剂提供了新策略,更通过CO2资源化利用路径,为缓解温室效应、推动“双碳”目标实现提供了重要理论支撑与技术参考。
中图分类号:
李跃军, 曹铁平, 孙大伟. Bi调控S型异质结CeO2/PANI界面电荷分离增强CO2光还原性能[J]. 化工学报, DOI: 10.11949/0438-1157.20250281.
Yuejun LI, Tieping CAO, Dawei SUN. Bi Nanoparticles Loading Modulates Interfacial Charge Separation in CeO2/PANI S-Scheme Heterojunction for Enhanced CO2 Photoreduction Performance[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250281.
图5 不同样品的光致发光(PL)光谱、瞬态光电流响应及电化学阻抗谱(EIS)(a) PL谱图 (b) 光电流图 (c) 电化学阻抗谱
Fig.5 Photoluminescence(PL)Spectra, Transient Photocurrent Responses, and Electrochemical Impedance Spectroscopy(EIS) of Different Samples
| 催化剂 | CO | CH4 | O2 | C2H4 | C2H6 |
|---|---|---|---|---|---|
| CeO2 | - | - | 2.18 | - | - |
| PANI | 0.48 | 0.54 | 1.42 | - | - |
| Bi/PANI | 2.75 | 2.23 | 8.86 | 0.22 | 0.13 |
| CeO2/PANI | 7.62 | 3.15 | 10.36 | 0.48 | 0.31 |
| Bi/PANI/CeO2 | 12.38 | 4.86 | 12.05 | 1.52 | 1.13 |
表1 不同样品光催化CO2产物生成速率(μmol·g-1·h-1)
Table 1 Photocatalytic CO₂ Product Formation Rates of Different Samples
| 催化剂 | CO | CH4 | O2 | C2H4 | C2H6 |
|---|---|---|---|---|---|
| CeO2 | - | - | 2.18 | - | - |
| PANI | 0.48 | 0.54 | 1.42 | - | - |
| Bi/PANI | 2.75 | 2.23 | 8.86 | 0.22 | 0.13 |
| CeO2/PANI | 7.62 | 3.15 | 10.36 | 0.48 | 0.31 |
| Bi/PANI/CeO2 | 12.38 | 4.86 | 12.05 | 1.52 | 1.13 |
图6 不同样品光催化CO2还原产物产率以及Bi/PANI/CeO2产物生成量随时间变化及同位素13CO2标记实验
Fig. 6 Photocatalytic CO2 reduction product yields of different samples, variation of product formation amount of Bi/PANI/CeO2 with time, and isotope ¹³CO2 labeling experiment
图7 样品Bi/PANI/CeO2光催化CO2循环反应15次产物产率保持率及循环前后XRD图
Fig. 7 Product yield retention rate of photocatalytic CO2 cyclic reaction for 15 times over sample Bi/PANI/CeO2, and crystal phases and morphologies before and after cycling
图8 样品CeO2/PANI的自由基捕获(EPR)和表面电势(KPFM)测试实验本研究聚焦于光催化反应机理解析与异质结类型验证这一核心科学问题。借助电子顺磁共振(EPR)捕获实验和开尔文探针力显微镜(KPFM)实验开展研究。如图8(a,b)所示,在CeO2/PANI的实验结果中,同时检测到了羟基自由基(・OH)和超氧阴离子自由基(・O2⁻)的特征信号,这意味着光生电子与空穴分别参与到O2还原和H2O氧化反应中;在Bi/PANI 的检测结果中,只观察到微弱的・O2⁻信号,反映出其缺乏有效的空穴氧化路径。利用开尔文探针力显微镜(KPFM)在暗态和模拟太阳光照条件下测试样品Bi/CeO2/PANI表面电势变化,如图8(c)所示。光照条件下样品的表面电势明显高于暗环境,两者相差约20 mV,增强的内建电场和电势梯度表明大量的光生载流子生成和高效分离。
Fig. 8 Radical Trapping (EPR) and Surface Potential (KPFM) Experiments for Sample CeO2/PANI
图9 样品CeO2/PANI中常规Type - II异质结与S - scheme异质结电荷转移机制示意图注:(a) Type-II (b) S-scheme
Fig.9 Schematic diagrams of charge transfer mechanisms in conventional Type - II heterojunction and S - scheme heterojunction of CeO2/PANI sample
| 1 | Zhang L, Li C Q, Liu Y, et al. Unraveling active sites regulation and temperature-dependent thermodynamic mechanism in photothermocatalytic CO2 conversion with H2O[J]. NPJ Computational Materials, 2024, 10: 132. |
| 2 | Wang W, Zhang W Y, C Yet al Dengc. Accelerated photocatalytic carbon dioxide reduction and water oxidation under spatial synergy[J]. Angewandte Chemie International Edition, 2024, 63(7): e202317969. |
| 3 | Liu L Z, Hu J C, Ma Z Y, et al. One-dimensional single atom arrays on ferroelectric nanosheets for enhanced CO2 photoreduction[J]. Nature Communications, 2024, 15(1): 305. |
| 4 | Li M Y, Wu S Q, Liu D N, et al. Engineering spatially adjacent redox sites with synergistic spin polarization effect to boost photocatalytic CO2 methanation[J]. Journal of the American Chemical Society, 2024, 146(22): 15538-15548. |
| 5 | Chang X L, Yan T, Pan W G. Toward tailoring metal-organic frameworks for photocatalytic reduction of CO2 to Fuels[J]. Crystal Growth & Design, 2024, 24(6): 2619-2644. |
| 6 | Ren C J, Li Q, Ling C Y, et al. Mechanism-guided design of photocatalysts for CO2 reduction toward multicarbon products[J]. Journal of the American Chemical Society, 2023, 145(51): 28276-28283. |
| 7 | Wang J Y, Yang C, Mao L, et al. Regulating the metallic Cu–Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4 [J]. Advanced Functional Materials, 2023, 33(28): 2213901. |
| 8 | Huang H N, Shi R, Li Z H, et al. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas–water boundary[J]. Angewandte Chemie International Edition, 2022, 61(17): e202200802. |
| 9 | Liu Y P, Zou R, Chen Z X, et al. Engineering a hydrophobic–hydrophilic diphase in a Bi2WO6–C3N4 heterojunction for solar-powered CO2 reduction[J]. ACS Catalysis, 2024, 14(1): 138-147. |
| 10 | Chen S, Huang D L, Zeng G M, et al. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: Synergism of interfacial coupling and hole-transfer[J]. Chemical Engineering Journal, 2020, 382: 122840. |
| 11 | Ahamad T, Naushad M, Alzaharani Y, et al. Photocatalytic degradation of bisphenol-a with g-C3N4/MoS2-PANI nanocomposite: kinetics, main active species, intermediates and pathways[J]. Journal of Molecular Liquids, 2020, 311: 113339. |
| 12 | Chen F W, Li Z Q, Jiang Y M, et al. Photocatalytic CO2 reduction coupled with oxidation of benzyl alcohol over CsPbBr3@PANI nanocomposites[J]. The Journal of Physical Chemistry Letters, 2023, 14(49): 11008-11014. |
| 13 | Zheng Y F, Wang Y, Mansoor S, et al. Tuning electrons migration of dual S defects mediated MoS2- x /ZnIn2S4- x toward highly efficient photocatalytic hydrogen production[J]. Small, 2024, 20(33): 2311725. |
| 14 | Wang D Z, Zhu J C, Zu X L, et al. Selective CO2 photoreduction to CH4 via Pdδ+-assisted hydrodeoxygenation over CeO2 nanosheets[J]. Angewandte Chemie International Edition, 2022, 61(30): e202203249. |
| 15 | Yan Y Q, Wu Y Z, Wu Y H, et al. Recent advances of CeO2-based composite materials for photocatalytic applications[J]. ChemSusChem, 2024, 17(14): e202301778. |
| 16 | Xu Q L, Zhang L Y, Cheng B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559. |
| 17 | Xu B R, Luo S C Hua W B, et al. Mechanistic insights into photocatalytic CO2 reduction with oxygen evolution[J]. Journal of the American Chemical Society. 2014, 136: 12345–12350. |
| 18 | Dong F, Xiong T, Sun Y J, et al. A semimetal bismuth element as a direct plasmonic photocatalyst[J]. Chemical Communications, 2014, 50(72): 10386-10389. |
| 19 | Dong F, Zhao Z W, Sun Y J, et al. An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification[J]. Environmental Science & Technology, 2015, 49(20): 12432-12440. |
| 20 | Yang J J, Li L, Xiao C, et al. Dual-plasmon resonance coupling promoting directional photosynthesis of nitrate from air[J]. Angewandte Chemie International Edition, 2023, 62(47):e202311911. |
| 21 | Ding J, Li C H, Yin H S, et al. One-pot solvothermal synthesis of Bi/Bi2S3/Bi2WO6 S-scheme heterojunction with enhanced photoactivity towards antibiotic oxytetracycline degradation under visible light[J]. Environmental Pollution, 2023, 327: 121550. |
| 22 | Zeng X Y, Xiao X Y, Chen J Y, et al. Electron-hole interactions in choline-phosphotungstic acid boosting molecular oxygen activation for fuel desulfurization[J]. Applied Catalysis B: Environmental, 2019, 248: 573-586. |
| 23 | Nyholm R, Berndtsson A, Martensson N. Core level binding energies for the elements Hf to Bi (Z=72-83)[J]. Journal of Physics C: Solid State Physics, 1980, 13(36): L1091-L1096. |
| 24 | Shen C H, Chen Y, Xu X J, et al. Efficient photocatalytic H2 evolution and Cr(VI) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts[J]. Journal of Hazardous Materials, 2021, 416: 126217. |
| 25 | García-Fernández M J, Pastor-Blas M M, Epron F, et al. Proposed mechanisms for the removal of nitrate from water by platinum catalysts supported on polyaniline and polypyrrole[J]. Applied Catalysis B: Environmental, 2018, 225: 162-171. |
| 26 | Chen S G, Wei Z D, Qi X Q, et al. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J]. Journal of the American Chemical Society, 2012, 134(32): 13252-13255. |
| 27 | Wang L L, Ma W H, Fang Y F, et al. Bi4Ti3O12 synthesized by high temperature solid phase method and it's visible catalytic activity[J]. Procedia Environmental Sciences, 2013, 18: 547-558. |
| 28 | Zondaka Z, Kesküla A, Tamm T, et al. Polypyrrole linear actuation tuned by phosphotungstic acid[J]. Sensors and Actuators B: Chemical, 2017, 247: 742-748. |
| 29 | Wang F, Zeng F S, Yu Z Y, et al. A comparative study about the influence of nitrogen doping and oxygen vacancies on the photocatalytic performance of ceria[J]. Surfaces and Interfaces, 2024, 46: 103889. |
| 30 | Tu W G, Zhou Y, Zou Z G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects[J]. Advanced Materials, 2014, 26(27): 4607-4626. |
| [1] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [2] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [3] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [4] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [5] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| [6] | 张翼辰, 张文彪, 李浩洋, 宁晓阳. 基于双差压模型的文丘里管气液两相CO2流量测量[J]. 化工学报, 2025, 76(4): 1493-1503. |
| [7] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| [8] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [9] | 霍军良, 唐治国, 邱宗君, 冯玉华, 蒋旭, 王乐怡, 杨宇, 乔帆帆, 赫一凡, 喻健良. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908. |
| [10] | 吴罗长, 杨泽宇, 颜建国, 朱旭涛, 陈阳, 王子辰. 微小方形通道内近超临界压力二氧化碳流动换热特性实验研究[J]. 化工学报, 2025, 76(4): 1583-1594. |
| [11] | 石孟琪, 王欢, 王守娟, 席跃宾, 孔凡功. 木质素基炭材料的制备及其在锂硫电池中的研究进展[J]. 化工学报, 2025, 76(4): 1463-1483. |
| [12] | 张赵雪, 李正宇, 崔文慧, 王倩, 王志平, 龚领会. 基于液氖液氮梯级蓄冷的液氢储能中冷能回收利用研究[J]. 化工学报, 2025, 76(4): 1731-1741. |
| [13] | 肖俊兵, 邹博, 任建地, 刘昌会, 贾传坤. 基于相图分析的氯化物复合熔盐储热性能研究[J]. 化工学报, 2025, 76(3): 963-974. |
| [14] | 伏遥, 邵应娟, 钟文琪. TiO2掺杂钙基材料加压碳酸化循环储热性能实验研究[J]. 化工学报, 2025, 76(3): 1180-1190. |
| [15] | 李远华, 凌思棋, 封科军, 冯颖, 郭于菁, 谢世桓. 基于cMOFs的固定化脂肪酶微反应器的构筑及其扁桃酸催化应用[J]. 化工学报, 2025, 76(3): 1170-1179. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号