化工学报

• •    

Bi调控S型异质结CeO2/PANI界面电荷分离增强CO2光还原性能

李跃军1, 曹铁平1,2, 孙大伟2   

  1. 1.海南科技职业大学医药学院,海南 海口 570100
    2.白城师范学院化学学院,吉林 白城 137000
  • 收稿日期:2025-03-20 修回日期:2025-05-17 出版日期:2025-06-27
  • 通讯作者: 曹铁平
  • 作者简介:李跃军(1964—),男,硕士,教授,bc640628-163.com
  • 基金资助:
    国家自然科学基金项目(21573003);吉林省自然科学基金项目(201205034)

Bi Nanoparticles Loading Modulates Interfacial Charge Separation in CeO2/PANI S-Scheme Heterojunction for Enhanced CO2 Photoreduction Performance

Yuejun LI1, Tieping CAO1,2, Dawei SUN2   

  1. 1.School of Medicine, Hainan Vocational University of Science and Technology, Haikou 570100, China
    2.College of Chemistry, Baicheng Normal University, Jilin Baicheng 137000, China
  • Received:2025-03-20 Revised:2025-05-17 Online:2025-06-27
  • Contact: Tieping CAO

摘要:

本文通过静电纺丝技术结合溶剂热法,成功构建了具有分级结构的Bi/PANI/CeO2三元协同催化体系。该体系通过PANI纳米纤维原位构建Bi纳米粒子与CeO2纳米立方体,形成独特的S型异质结构。多维度表征结果表明,Bi/PANI/CeO2在模拟太阳光下表现出优异的CO2还原性能;光照3小时后,CO和CH4生成速率分别达到12.38 μmol·g-¹·h-¹和4.86 μmol·g-¹·h-¹,显著优于纯PANI纳米纤维(CO: 0.48 μmol·g-¹·h-¹;CH4: 0.54 μmol·g-¹·h-¹),实现了26倍和9倍的性能提升,且15次循环后性能保持率达90%。该材料通过S型异质结能带匹配机制实现光生载流子高效分离,同时Bi纳米粒子的表面等离子体共振(SPR)效应协同激活电子并诱导活性位点,为CO2还原提供双重驱动力。本研究不仅为设计高效光催化剂提供了新策略,更通过CO2资源化利用路径,为缓解温室效应、推动“双碳”目标实现提供了重要理论支撑与技术参考。

关键词: 复合材料, 光催化, S 型异质结, 二氧化碳

Abstract:

In this study, a hierarchical Bi/PANI/CeO2 photocatalytic system was successfully constructed via electrospinning combined with a solvothermal method. This system forms a unique S-scheme heterojunction structure through in-situ loading of Bi nanoparticles and CeO2 nanocubes on PANI nanofibers. Multidimensional characterization results demonstrate that Bi/PANI/CeO2 exhibits superior CO2 reduction performance under simulated sunlight: after 3 hours of irradiation, CO and CH4 production rates reached 12.38 μmol·g-¹·h-¹ and 4.86 μmol·g-¹·h-¹, respectively, significantly surpassing pure PANI nanofibers(CO: 0.48 μmol·g-¹·h-¹; CH4: 0.54 μmol·g-¹·h-¹) with 26-fold and 9-fold enhancements. The catalyst retained 90% of its initial activity after fifteen cycles. The material achieves efficient photogenerated carrier separation via S-scheme band alignment, while surface plasmon resonance(SPR) of Bi nanoparticles synergistically activates electrons and induces active sites, providing dual driving forces for CO2 reduction. This research not only offers a novel strategy for designing high-efficiency photocatalysts but also provides critical theoretical support and technical references for mitigating the greenhouse effect and advancing the "dual carbon" goal through CO2 resource utilization pathways.

Key words: composites, photocatalytic, S-scheme heterojunction, carbon dioxide

中图分类号: