| [1] |
Zhang L, Li C Q, Liu Y, et al. Unraveling active sites regulation and temperature-dependent thermodynamic mechanism in photothermocatalytic CO2 conversion with H2O[J]. NPJ Computational Materials, 2024, 10: 132.
|
| [2] |
Wang W, Zhang W Y, Dengc C Y, et al. Accelerated photocatalytic carbon dioxide reduction and water oxidation under spatial synergy[J]. Angewandte Chemie International Edition, 2024, 63(7): e202317969.
|
| [3] |
Liu L Z, Hu J C, Ma Z Y, et al. One-dimensional single atom arrays on ferroelectric nanosheets for enhanced CO2 photoreduction[J]. Nature Communications, 2024, 15(1): 305.
|
| [4] |
Li M Y, Wu S Q, Liu D N, et al. Engineering spatially adjacent redox sites with synergistic spin polarization effect to boost photocatalytic CO2 methanation[J]. Journal of the American Chemical Society, 2024, 146(22): 15538-15548.
|
| [5] |
Chang X L, Yan T, Pan W G. Toward tailoring metal-organic frameworks for photocatalytic reduction of CO2 to fuels[J]. Crystal Growth & Design, 2024, 24(6): 2619-2644.
|
| [6] |
Ren C J, Li Q, Ling C Y, et al. Mechanism-guided design of photocatalysts for CO2 reduction toward multicarbon products[J]. Journal of the American Chemical Society, 2023, 145(51): 28276-28283.
|
| [7] |
Wang J Y, Yang C, Mao L, et al. Regulating the metallic Cu—Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4 [J]. Advanced Functional Materials, 2023, 33(28): 2213901.
|
| [8] |
Huang H N, Shi R, Li Z H, et al. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angewandte Chemie International Edition, 2022, 61(17): e202200802.
|
| [9] |
Liu Y P, Zou R, Chen Z X, et al. Engineering a hydrophobic-hydrophilic diphase in a Bi2WO6-C3N4 heterojunction for solar-powered CO2 reduction[J]. ACS Catalysis, 2024, 14(1): 138-147.
|
| [10] |
Chen S, Huang D L, Zeng G M, et al. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: synergism of interfacial coupling and hole-transfer[J]. Chemical Engineering Journal, 2020, 382: 122840.
|
| [11] |
Ahamad T, Naushad M, Alzaharani Y, et al. Photocatalytic degradation of bisphenol-A with g-C3N4/MoS2-PANI nanocomposite: kinetics, main active species, intermediates and pathways[J]. Journal of Molecular Liquids, 2020, 311: 113339.
|
| [12] |
Chen F W, Li Z Q, Jiang Y M, et al. Photocatalytic CO2 reduction coupled with oxidation of benzyl alcohol over CsPbBr3@PANI nanocomposites[J]. The Journal of Physical Chemistry Letters, 2023, 14(49): 11008-11014.
|
| [13] |
Zheng Y F, Wang Y, Mansoor S, et al. Tuning electrons migration of dual S defects mediated MoS2- x /ZnIn2S4- x toward highly efficient photocatalytic hydrogen production[J]. Small, 2024, 20(33): 2311725.
|
| [14] |
Wang D Z, Zhu J C, Zu X L, et al. Selective CO2 photoreduction to CH4 via Pd δ +-assisted hydrodeoxygenation over CeO2 nanosheets[J]. Angewandte Chemie International Edition, 2022, 61(30): e202203249.
|
| [15] |
Yan Y Q, Wu Y Z, Wu Y H, et al. Recent advances of CeO2-based composite materials for photocatalytic applications[J]. ChemSusChem, 2024, 17(14): e202301778.
|
| [16] |
Xu Q L, Zhang L Y, Cheng B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559.
|
| [17] |
Xu B R, Luo S C, Hua W B, et al. Mechanistic insights into photocatalytic CO2 reduction with oxygen evolution[J]. Journal of the American Chemical Society, 2014, 136: 12345-12350.
|
| [18] |
Dong F, Xiong T, Sun Y J, et al. A semimetal bismuth element as a direct plasmonic photocatalyst[J]. Chemical Communications, 2014, 50(72): 10386-10389.
|
| [19] |
Dong F, Zhao Z W, Sun Y J, et al. An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification[J]. Environmental Science & Technology, 2015, 49(20): 12432-12440.
|
| [20] |
Yang J J, Li L, Xiao C, et al. Dual-plasmon resonance coupling promoting directional photosynthesis of nitrate from air[J]. Angewandte Chemie International Edition, 2023, 62(47): e202311911.
|
| [21] |
Ding J, Li C H, Yin H S, et al. One-pot solvothermal synthesis of Bi/Bi2S3/Bi2WO6 S-scheme heterojunction with enhanced photoactivity towards antibiotic oxytetracycline degradation under visible light[J]. Environmental Pollution, 2023, 327: 121550.
|
| [22] |
Zeng X Y, Xiao X Y, Chen J Y, et al. Electron-hole interactions in choline-phosphotungstic acid boosting molecular oxygen activation for fuel desulfurization[J]. Applied Catalysis B: Environmental, 2019, 248: 573-586.
|
| [23] |
Nyholm R, Berndtsson A, Martensson N. Core level binding energies for the elements Hf to Bi (Z=72—83)[J]. Journal of Physics C: Solid State Physics, 1980, 13(36): L1091-L1096.
|
| [24] |
Shen C H, Chen Y, Xu X J, et al. Efficient photocatalytic H2 evolution and Cr(Ⅵ) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts[J]. Journal of Hazardous Materials, 2021, 416: 126217.
|
| [25] |
García-Fernández M J, Pastor-Blas M M, Epron F, et al. Proposed mechanisms for the removal of nitrate from water by platinum catalysts supported on polyaniline and polypyrrole[J]. Applied Catalysis B: Environmental, 2018, 225: 162-171.
|
| [26] |
Chen S G, Wei Z D, Qi X Q, et al. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J]. Journal of the American Chemical Society, 2012, 134(32): 13252-13255.
|
| [27] |
Wang L L, Ma W H, Fang Y F, et al. Bi4Ti3O12 synthesized by high temperature solid phase method and it's visible catalytic activity[J]. Procedia Environmental Sciences, 2013, 18: 547-558.
|
| [28] |
Zondaka Z, Kesküla A, Tamm T, et al. Polypyrrole linear actuation tuned by phosphotungstic acid[J]. Sensors and Actuators B: Chemical, 2017, 247: 742-748.
|
| [29] |
Wang F, Zeng F S, Yu Z Y, et al. A comparative study about the influence of nitrogen doping and oxygen vacancies on the photocatalytic performance of ceria[J]. Surfaces and Interfaces, 2024, 46: 103889.
|
| [30] |
Tu W G, Zhou Y, Zou Z G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects[J]. Advanced Materials, 2014, 26(27): 4607-4626.
|