化工学报

• •    

集成余热回收的多压超临界CO2热泵储电系统热经济学特性研究

周晨阳(), 商浩杰, 胡杨, 曹天航, 姚尔人(), 席光   

  1. 西安交通大学能源与动力工程学院,陕西 西安 710049
  • 收稿日期:2025-04-27 修回日期:2025-07-06 出版日期:2025-07-07
  • 通讯作者: 姚尔人
  • 作者简介:周晨阳(2004—),男,本科生,zcy2789866672@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52306050);国家自然科学基金项目(52130603);陕西省重点研发计划(2025CY-YBXM-171);中央高校基本科研业务费专项资金项目(XYZ012024030);中央高校基本科研业务费专项资金项目(xxj032025085);国家级大学生创新训练计划项目(S202410698130)

Thermo-economic analysis of a multi-pressure supercritical CO₂ pumped thermal energy storage system integrated with waste heat recovery

Chenyang ZHOU(), Haojie SHANG, Yang HU, Tianhang CAO, Erren YAO(), Guang XI   

  1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2025-04-27 Revised:2025-07-06 Online:2025-07-07
  • Contact: Erren YAO

摘要:

热泵储电是实现高比例新能源电力系统稳定运行的大规模长时物理储能技术,而推动大规模高效储能应用以及改善火电深度调峰能力是保障新能源电力充分消纳与煤电低碳转型的重要途径。为此,开发了一种集成余热回收的多压超临界CO2热泵储电系统,不仅可以实现火电厂低品位烟气余热的高效回收与利用,并且通过引入多级储热拓扑与分布式回热装置,大幅降低了热泵储电系统在换热过程由于温度滑移问题导致的不可逆损失,实现了火电机组灵活调峰和可再生能源安全并网。在建立系统热力学与经济学模型的基础上,采用敏感性分析方法研究了关键运行参数对系统热力学性能与经济性能的影响规律,进而采用遗传算法开展了系统的热经济学多目标优化分析。结果表明,系统在设计工况下的性能指标㶲效率为53.83%,LCOE为673.51 CNY·MWh-1;在关键参数中,放电膨胀机等熵效率对系统热力学性能和经济学性能影响最显著。根据TOPSIS方法在Pareto最优前沿解集中获得的最优工况㶲效率为58.61%、平准化度电成本为558.48 CNY·MWh-1,较设计工况分别提升8.88%与降低17.08%。该结果可为所提系统的工程应用提供理论依据。

关键词: 热泵储电, 低温余热回收, 超临界二氧化碳, 优化设计, 遗传算法

Abstract:

Pumped Thermal Energy Storage (PTES) is a large-scale, long-duration physical energy storage technology for achieving stable operation of high-proportional renewable energy power systems, while advancing the large-scale application of efficient energy storage and enhancing the deep peak regulation capability of thermal power plants are vital pathways for both maximizing renewable energy integration and facilitating the low-carbon transition of coal-fired power. To this end, a novel multi-pressure supercritical CO₂ PTES system integrated with waste heat recovery is developed. This system achieves efficient recovery and utilization of low-grade flue gas waste heat from thermal power plants. Furthermore, by incorporating a multi-stage thermal storage topology and distributed regenerative devices, it significantly mitigates irreversible losses caused by temperature glide during heat exchange processes within the PTES system. Consequently, the proposed system enhances the flexible peak shaving capability of thermal power units and ensures the secure grid integration of renewable energy sources. Based on the establishment of thermodynamic and economic models, sensitivity analysis was employed to study the influence of key operating parameters on the system's thermodynamic and economic performance. Furthermore, a genetic algorithm was applied to conduct thermo-economic multi-objective optimization. Results indicate that under design conditions, the system achieves an exergy efficiency of 53.83% and a levelized cost of electricity (LCOE) of 673.51 CNY·MWh⁻¹; among key parameters, the isentropic efficiency of the discharge turbine has the most significant impact on thermodynamic performance and economic performance. The optimal solution selected from the Pareto optimal solution set via the TOPSIS method achieves an exergy efficiency of 58.61% and a levelized cost of electricity (LCOE) of 558.48 CNY·MWh⁻¹, representing an improvement of 8.88% in efficiency and a reduction of 17.08% in cost compared to design conditions. These results provide theoretical foundations for the engineering application of the proposed system.

Key words: pumped thermal energy storage, low-temperature waste heat recovery, supercritical carbon dioxide, optimal design, genetic algorithm

中图分类号: